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Abstract 

The Fourier series method for solving bending problems of third order shear deformable beams (TSBD) is presented in this paper. The 

theory accounts for transverse shear deformation and is suitable for moderately thick beams. Transverse shear stress free conditions 

are valid at the beam surfaces for TSDB. The field equations are two coupled ordinary differential equations in terms of two unknown 

displacement functions – transverse deflection w(x) and warping function ( ).x  For simply supported ends considered, the loading and 

unknown functions w(x) and ( )x  are represented in Fourier series that satisfies the boundary conditions. The problem is reduced to a 

system of algebraic equations in terms of the Fourier coefficients wn and ,n   which is solved to obtain wn and .n  Axial and 

transverse displacements fields, axial bending stress xx  and transverse shear stress xz  are then determined for the cases of point 

load at midspan, uniformly and linearly distributed loads over the span. The results are identical with previous results obtained by 

other scholars who used Ritz variational methods and other mathematical tools. For moderately thick beams under uniform load with 

l/h = 4, results obtained for xx is 0.516% greater than the exact result by Timoshenko and Goodier while for thick beams under 

uniform load with l/h = 2, the result for xx  is 1.96% greater than the exact result by Timoshenko and Goodier. Similar acceptable 

variation was obtained for xx  for beams under linearly distributed load with the variations being less than 2% for l/h = 2. However, 

unacceptable variations of 68.37% were found for xx  in thick beams under point load, for l/h = 2.0. The variation for xx  however 

reduced to 12.513% for moderately thick beams under point load for l/h =4. 
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I. INTRODUCTION 

Beams are flexural structures (with application to all fields 
of engineering) which are usually submitted to transverse point 
and distributed loads acting on the span. In the process axial 
bending stresses and transverse shear stresses, and axial and 
transverse displacements are developed in the beam. The 
mechanics of beams is affected by the ratio of the transverse 
dimension to the longitudinal dimension; and this ratio 
determines the categorization as thin, moderately thick and 
thick beams. 

The well-known Euler-Bernoulli theory (EBT) was 
developed for thin beams using the Navier’s (Bernoulli’s) 
hypothesis [1 – 4]. It has been found to give satisfactory results 
for cases where transverse shear deformations do not make an 
important contribution to the behavior [1 – 4]. 

Other studies, formulations and theories derived to take 
consideration of transverse shear deformations are by 
Timoshenko [5], Mindlin, Shimpi, Levinson [6], Reissner, 
Sayyad, Shimpi et al [7], Ghugal and Sharma [8], 
Ambartsumyan [9], Kruszewski [10], Akavci [11], Reddy [12], 
Timoshenko and Goodier [13]. 
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Timoshenko’s beam theory (TBT) and Mindlin beam 
theories are first order shear deformation theories (FSDT) 
which assume that the transverse shear strain is constant in the 
beam transverse dimension; thus violating the transverse shear 

stress force conditions at the beam surfaces ( /2).z h    Shear 

correction factors are introduced in the TBT to obtain 
transverse shear stresses that agree with energy principles. 

Ike [14] used the Ritz method to solve the bending 
problems of third order shear deformable beams subjected to 
uniformly distributed loading over the entire span. Ike and 
Oguaghamba [15] applied the Fourier series method to solve 
flexural problems of thick beams modelled using trigonometric 
shear deformation theory. 

Ike [16] presented variational formulation and analytical 
solutions to the flexural problems of moderately thick beams 
modelled using Timoshenko theory. Onah et al [17] used 
classical mathematical methods to obtain closed form solutions 
to the elastic stability problems of moderately thick beams. Ike 
et al [18] used the Laplace transformation method to obtain the 
buckling loads of moderately thick beams for various end 
support conditions. 

Ghugal [19] solved in closed form the bending problem of 
thick beams using plane elasticity methods. Other important 
contributions to the studies of moderately thick beams include 
Ghugal and Shimpi [20], Heyliger and Reddy [21], Ghugal and 
Dahake [22] and Sayyad [23, 24]. 

Reissner beam theory is a stress-based theory while 
Levinson and Reddy are third higher order shear deformation 
theories. Higher order shear deformation theories have been 
presented. Refined beam theories (RBT) were formulated by 
Shimpi, Shimpi et al [7], and Ghugal and Sharma [8]. 
Timoshenko and Goodier [13] solved thick beam bending 
problems using elasticity theory. 

This paper presents the Fourier series method for solving 
third order shear deformable beam bending problems. Three 
cases of loading considered are: point load at midspan, 
uniformly distributed load, and linearly distributed load over 
the span. 

Limitations of the proposed method  

 The proposed Fourier series method is limited to beams 
that are simply supported at the ends. This enables the Fourier 
sine series to be a suitable displacement shape function since 
the displacement boundary conditions are satisfied at the 
simply supported ends. It is also applicable to specific loading 
conditions where the loads could be expressed using Fourier 
series theory.    

II. THE THIRD ORDER SHEAR DEFORMATION BEAM THEORY 

The thick beam bending problem due to transverse load as 

shown in Figure 1 is considered. The beam’s material 

properties are E = 210GPa, 
30.30, 7800kg/m .     E is 

the Young’s modulus of elasticity,   is the mass density,   is 

the Poisson’s ratio. 

 

 

Fig. 1. Thick beam carrying transverse load q(x) 

 

The beam domain is: 0 , ,
2 2

b bx l y     

2 2
h hz     

h is the depth (thickness) of the beam, b is the width, and l 

is the span of the beam. 

A. Assumptions 

The assumptions are  

(i) the axial displacement is composed of a bending and 

shear deformation component 

(ii) the transverse displacement w(x) depends only on the x 

coordinate 

(iii) the beam is subjected to lateral loads only 

(iv)  the relations between the stresses and strains are one-

dimensional. 

B. Displacement 

The displacement components are expressed by: 

3

2

4
( , ) ( )

3

dw z
u x z z z x

dx h

 
      

 

       (1) 

( , ) ( )w x z w x            (2) 

The normal strains xx  and shear strain xz  are found using 

the kinematic relations as: 

2 3

2 2

4
( )

3
xx

u d w z
z z x

x dx h

 
          
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       (4) 

The normal stress xx  and shear stress xz  are 

2 3
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4
( )

3
xx xx

d w z
E E z z x
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  
           
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 

       (6) 

G is the shear modulus of the beam material. 

The potential energy functional   is expressed by: 
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            …(7) 

Thus, 
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Simplifying, 
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III. EULER-LAGRANGE EQUATIONS OF EQUILIBRIUM 

The Euler-Lagrange equations of equilibrium are obtained 

using: 
2

2
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Then, 
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For the considered problem, the boundary conditions are: 

( 0) ( ) 0w x w x l                (22a) 

( 0) ( ) 0xx xxw x w x l               (22b) 

( 0) ( ) 0x xx x l                 (22c) 

Thus, suitable Fourier series functions for w(x) and ( )x  are 

1
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where wn and n  are amplitudes of w(x) and ( ).x   

Then, the system of domain equations become: 
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Orthogonalizing, we have: 
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Dividing by EI gives: 
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Solving, 
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A. Axial displacement, u 

The axial displacement field is found as: 

3

2
1

4
( , ) cos

3
n n

n

n z n x
u x z z w z

l lh





    
              
    (44) 

The maximum transverse displacement w occurs at x = l/2, z = 

0, and is  

 
1

, 0 sin
2 2

n

n

nlw x z w





          (45) 

The axial bending stress field ( , )xx x z  is 
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2 3

2
1

4
( , ) sin

3
xx n n

n

n z n n x
x z E z w z

l l lh





     
              



            …(46) 

Then, 

  
2

1

,
2 2 2

xx n

n

h nl hx z E w
l





  
         

   

      sin
2 2

n

h n n
g

l

   
   
  

  (47) 

where 
3

2

4
( )

3

z
g z z

h
    

The transverse shear stress xz  is found as 

2

2
1

4
1 cosxz n

n

z n x
G

lh





  
     

 
        (48) 

Then, 

1

( 0, 0)xz n

n

x z G




            (49) 

IV. RESULTS 

Stresses and displacements at points on the thick beam 

subjected to uniformly distributed load, linearly distributed 

load, and point load at the center are shown in Tables 1 – 6. 

The non-dimensional displacements ,u w  and stresses 

,xx xz   used  in the tables are defined as follows: 

3
0

10

p l l
w w

Eb h

 
  

 
            (50a) 

xx xx

p

b

 
    

 
             (50b) 

xz xz

p

b

 
    

 
             (50c) 

 

TABLE I.  VALUES OF AXIAL AND TRANSVERSE DISPLACEMENT AT 

GIVEN POINTS ON A THICK ISOTROPIC BEAM UNDER UNIFORMLY DISTRIBUTED 

LOAD FOR DIFFERENT ASPECT RATIOS 

l/h Reference/Method 
( ,

/ 2)

u x l

z h



 
 

% 

Difference 

( /2,

0)

w x l

z




 

% 

Difference 

2 

Present 2.245 2.045 2.532 3.221 

Reddy [12] 2.245 2.045 2.532 3.221 

Timoshenko [5] 2.000 –9.091 2.538 3.465 

Ambartsumyan [9] – – 2.357 –3.913 

Kruszewski [10] – – 2.215 2.527 

Akavci [11] – – 2.523 2.853 

Euler-Bernoulli 2.000 –9.091 1.563 –36.282 

Ike [14]  

(Ritz method) 
2.245 2.682 2.532 3.221 

Timoshenko and 

Goodier [13] 
2.200 0 2.453 0 

4 

Present 16.504 4.456 1.806 1.176 

Reddy [12] 16.504 4.456 1.806 1.176 

Timoshenko [5] 16.000 1.265 1.806 1.176 

Ambartsumyan [9] – – 1.762 –1.288 

Kruszewski [10] – – 1.805 1.120 

Akavci [11] – – 1.804 1.064 

Euler-Bernoulli 16.000 1.265 1.563 –12.437 

Ike [14]  

(Ritz method) 
16.504 4.456 1.806 1.176 

Timoshenko and 
Goodier [13] 

15.800 0 1.785 0 

10 

Present 251.27 0.709 1.602 0.25 

Reddy [12] 251.27 0.709 1.602 0.25 

Timoshenko [5] 250.00 0.200 1.602 0.25 

Ambartsumyan [9] – – 1.595 –0.187 

Kruszewski [10] – – 1.602 0.25 

Akavci [11] – – 1.601 0.187 

Euler-Bernoulli 250.00 0.200 1.563 –2.190 

Ike [14]  

(Ritz method) 
251.27 0.709 1.602 0.25 

Timoshenko and 

Goodier [13] 
249.50 0 1.598 0 

 

TABLE II.  NON-DIMENSIONAL AXIAL STRESSES ( /2, /2)xx x l z h    

AND TRANSVERSE SHEAR STRESSES ( 0, 0)xz x z    FOR THICK ISOTROPIC 

BEAM CARRYING UNIFORMLY DISTRIBUTED LOAD FOR VARIOUS ASPECT 

RATIOS 

l/h Reference/Theory xx   % Diff CR
xz   % Diff EE

xz   % Diff 

2 

Present 3.261 1.960 1.415 –5.667 1.262 –15.867 

Reddy [12] 3.261 1.960 1.415 –5.667 1.262 –15.867 

Timoshenko [5] 3.000 –6.25 0.984 –34.40 1.477 –1.533 

Ambartsumyan [9] 3.210 0.312 1.156 –22.93 – – 

Kruszewski [10] 3.261 1.906 1.333 –11.13 – – 

Akavci [11] 3.253 1.656 1.397 –6.866 – – 

Euler-Bernoulli 3.000 –6.25 – – 1.477 –1.533 

Ike [14] 3.261 1.960 1.415 –5.667 1.262 –15.867 

Timoshenko and 

Goodier [13] 
3.200 0 1.500 0 1.500 0 

4 

Present 12.263 0.516 2.908 –3.067 2.795 –6.833 

Reddy [12] 12.263 0.516 2.908 –3.067 2.795 –6.833 

Timoshenko [5] 12.000 –1.693 1.969 –34.367 2.953 –1.567 

Ambartsumyan [9] 12.212 0.098 2.389 –20.36 – – 

Kruszewski [10] 12.262 0.508 2.836 –5.466 – – 

Akavci [11] 12.254 0.442 2.882 –3.933 – – 

Euler-Bernoulli 12.00 –1.693 – – 2.953 –1.567 

Ike [14] 12.263 0.516 2.908 –3.067 – – 

Timoshenko and 
Goodier [13] 

12.20 0 3.000 0 3.000 0 

10 

Present 75.268 0.090 7.361 –1.853 7.304 –2.61 

Reddy [12] 75.268 0.090 7.361 –1.853 7.304 –2.61 

Timoshenko [5] 75.00 –0.264 4.922 –34.373 7.383 –1.56 

Ambartsumyan [9] 75.216 0.021 6.066 –19.12 – – 

Kruszewski [10] 75.266 0.087 7.328 –2.293 – – 

Akavci [11] 75.259 0.078 7.312 –2.506 – – 

Euler-Bernoulli 75.00 –0.264 – – 7.383 –1.56 

Ike [14] 75.268 0.090 7.361 –1.853 – – 

Timoshenko and 
Goodier [13] 

75.20 0 7.500 0 7.500 0 

 

TABLE III.  NON-DIMENSIONAL AXIAL DISPLACEMENTS 

( , / 2)u x l z h    AND TRANSVERSE DISPLACEMENTS ( /2, 0)w x l z   FOR 

THICK ISOTROPIC BEAMS CARRYING POINT LOAD AT THE CENTER OF SPAN FOR 

VARIOUS ASPECT RATIOS 

l/h Theory/Method/Reference u  
% 

Difference 
w  

% 

Difference 

2 
Present method 3.2611 – 4.3399 7.899 

Reddy [12] 3.2611 – 4.3399 7.899 
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Timoshenko [5] 3.0001 – 4.4198 9.978 

Euler-Bernoulli 3.0001 – 2.5000 –37.792 

Timoshenko and Goodier 

[13] 
– – 4.0188 0 

4 

Present method 25.5263 – 2.9726 2.0635 

Reddy [12] 25.5263 – 2.9726 2.0635 

Timoshenko [5] 24.0007 – 2.9799 2.3142 

Euler-Bernoulli 24.0007 – 2.5000 –14.1631 

Timoshenko and Goodier 

[13] 
– – 2.9125 0 

10 

Present method 376.3385 – 2.5765 0.292 

Reddy [12] 376.3385 – 2.5765 0.292 

Timoshenko [5] 375.0122 – 2.5768 0.304 

Euler-Bernoulli 375.0109 – 2.5000 –2.686 

Timoshenko and Goodier 

[13] 
– – 2.5690 0 

 

TABLE IV.  NON-DIMENSIONAL AXIAL BENDING STRESSES xx  AT 

( / 2, / 2),x l z h   TRANSVERSE SHEAR STRESSES 
CR
xxzz  (x = 0, z = 0), 

( 0, 0)EE
xz x z    FOR POINT LOAD AT THE MIDSPAN OF THICK ISOTROPIC 

BEAM FOR VARIOUS ASPECT RATIOS (l/h). 

l/h Theory/Reference xx  % Diff 
CR
xz  % Diff 

EE
xz  

% 
Diff 

2 

Present method 9.3469 68.571 1.5059 – 1.4290 – 

Reddy [12] 9.3469 68.571 1.5059 – 1.4290 – 

Timoshenko [5] 5.9065 6.523 1.0244 – 1.5367 – 

Euler-Bernoulli 5.9065 6.523 – – 1.5367 – 

Timoshenko and 

Goodier [13] 
5.5448 0 – – – – 

4 

Present method 28.6790 12.518 3.0319 1.063 2.9284 – 

Reddy [12] 28.6770 12.513 3.0319 1.063 2.9284 – 

Timoshenko [5] 23.6261 –7.311 2.0489 –31.703 3.0733 – 

Euler-Bernoulli 23.6261 –7.311 – – 3.0733 – 

Timoshenko and 

Goodier [13] 
25.4896 0 3.0000 0 – – 

10 

Present method 154.0091 14.255 7.6519 2.025 7.5733 – 

Reddy [12] 154.0091 14.255 7.6519 2.025 7.5733 – 

Timoshenko [5] 147.6634 –0.041 5.1223 –31.702 7.6834 – 

Euler-Bernoulli 147.6630 –0.0412 – – 7.6834 – 

Timoshenko and 
Goodier [13] 

147.7239 0 7.500 0 – – 

 

TABLE V.  NON-DIMENSIONAL AXIAL DISPLACEMENT  ( , / 2)u x l z h   

AND TRANSVERSE DISPLACEMENT ( /2, 0)w x l z   FOR THICK ISOTROPIC 

BEAMS SUBJECTED TO LINEARLY DISTRIBUTED LOAD FOR VARIOUS VALUES OF 

ASPECT RATIOS. 

l/h Theory/Reference u  % Diff w  % Diff 

2 

Present method 1.225 2.045 1.2660 3.2205 

Reddy [12] 1.225 2.045 1.2660 3.2205 

Timoshenko [5] 1.0000 –9.091 1.2690 3.465 

Euler-Bernoulli 1.0000 –9.091 0.7815 –36.282 

Timoshenko and Goodier 

[13] 
1.1000 0 1.2265 0 

4 

Present method 8.2520 4.456 0.9030 1.1765 

Reddy [12] 8.2520 4.456 0.9030 1.1765 

Timoshenko [5] 8.0000 1.266 0.9030 1.1765 

Euler-Bernoulli 8.0000 1.266 0.7815 –12.437 

Timoshenko and Goodier 

[13] 
7.9000 0 0.8925 0 

10 

Present method 125.635 0.709 0.8010 0.250 

Reddy [12] 125.635 0.709 0.8010 0.250 

Timoshenko [5] 125.000 0.200 0.8010 0.250 

Euler-Bernoulli 125.000 0.200 0.7815 –2.190 

Timoshenko and Goodier 

[13] 
124.750 0 0.7990 0 

 

TABLE VI.  DIMENSIONLESS AXIAL BENDING STRESSES 

( /2, /2),xx x l z h    TRANSVERSE SHEAR STRESSES 
CR
xxzz  (x = 0, z = 0), 

( 0, 0)EE
xz x z    FOR THICK ISOTROPIC BEAMS SUBJECTED TO LINEARLY 

DISTRIBUTED LOAD FOR VARIOUS VALUES OF ASPECT RATIOS. 

l/h Theory/Reference xx  % Diff CR
xz  

% 
Diff 

EE
xz  

% 
Diff 

2 

Present method 1.6310 1.938 0.7075 
–

5.667 
0.6310 – 

Reddy [12] 1.6310 1.938 0.7075 
–

5.667 
0.6310 – 

Timoshenko [5] 1.500 –6.25 0.600 –20 0.7385 – 

Euler-Bernoulli 1.500 –6.25 – – 0.7500 – 

Timoshenko and 

Goodier [13] 
1.600 0 0.7500 0 –  

4 

Present method 6.1315 0.5164 1.4540 
–

3.067 
1.3975 – 

Reddy [12] 6.1315 0.5164 1.4540 
–

3.067 
1.3975 – 

Timoshenko [5] 6.000 
–

1.6393 
1.2000 –20 1.4765 – 

Euler-Bernoulli 6.000 
–

1.6393 
– – 1.4765 – 

Timoshenko and 

Goodier [13] 
6.100 0 1.500 0 – – 

10 

Present method 37.634 0.090 3.6805 
–

1.853 
3.6520 – 

Reddy [12] 37.634 0.090 3.6805 
–

1.853 
3.6520 – 

Timoshenko [5] 37.500 –0.266 3.000 –20 3.6915 – 

Euler-Bernoulli 37.500 –0.266 – – 3.6915 – 

Timoshenko and 

Goodier [13] 
37.600 0 3.750 0 – – 

 
 

V. DISCUSSION 

Tables I and Table II present the results for displacements 

and stresses in thick beams carrying uniformly distributed 

loads. Table 1 shows that the present method gives identical 

results with previous results obtained using the Ritz 

variational method by Ike [14] and for l/h = 2 (corresponding 

to thick beams), the present results for transverse deflection 

which is 3.221% greater than the Timoshenko and Goodier 

exact solution is better than the Timoshenko solution which is 

3.465% greater than the exact solution. For l/h greater than 2, 

which is for thin and moderately thick beams, the present 

results for w(x = l/2, z = 0) are the same as the Timoshenko 

results. Similarly, from Table II, the results for 

( /2, /2)xx x l z h    show a relative difference ranging from 

0.090% for l/h = 10 to 1.960% for l/h = 2. The table further 

reveals that the results for xx  is better estimated using the 

present theory than the Timoshenko theory which yields a 

relative difference of –6.25% for l/h = 2.0. 

The results for moderately thick beams under point load at 

midspan are displayed in Table 3 for displacements and Table 

IV for stresses. Table III shows that the transverse 
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displacements ( /2, 0)w x l z   from the TSDT give better 

results than the Timoshenko theory with variations from the 

exact results of Timoshenko and Goodier varying from 

0.292% for l/h = 10 to 7.899% for l/h = 2 as compared with 

Timoshenko’s results that present variations of 0.304% for l/h 

= 10 to 9.978% for l/h = 2. 

Table IV shows that for ,xx  the present TSDT shows 

greater relative difference varying from 14.255% for l/h = 10 

to 68.571% for l/h = 2 as compared with Timoshenko’s FSDT. 

The unacceptable results obtained may be due to the 

singularity introduced by the point load. However, acceptable 

results are obtained for the transverse shear stresses xz  where 

the relative difference for the exact solution is less than 3.10% 

for all cases of l/h considered.  

Tables V and Table VI present respectively the 

displacements and stresses in moderately thick beams 

subjected to linearly distributed load to various l/h. The tables 

show that the present Fourier series results for TSDT are 

identical with previous results obtained by Reddy. Table V 

further shows that the present results for w(x = l/2, z = 0) vary 

from 0.25% for l/h = 10 to 3.2205% for l/h = 2 from the exact 

elasticity result of Timoshenko and Goodier. The variations 

show that the TSDT presents more accurate results for beams 

than the TBT as the TBT gives higher relative differences for 

w(x = l/2, z = 0). The relative differences for 

( /2, /2)xx x l z h    are 0.090% for l/h = 10 and 1.935% for 

l/h = 2, which are lower than the relative differences calculated 

for Timoshenko’s results; illustrating that the present theory is 

more accurate than the TBT. Table IV further shows that the 

Fourier series solution presented in this paper are identical with 

the Reddy third order shear deformable beam solution by 

classical methods. 

VI. CONCLUSION 

In conclusion, 

(i) The axial displacement obtained is an infinite cosine 

series. 

(ii) The expression for the maximum transverse 

displacement is an infinite sine series and the maximum 

value of w is found at x = l/2, z = 0. 

(iii) The axial flexural stress xx  is an infinite sine series 

expression with maximum values at x = l/2, /2.z h    

(iv) The transverse shear stress expression is an infinite 

cosine series, with maximum values at x = 0, z = 0. 

(v)  The third order shear deformation theory (TSDT) of 

beams is consistent with the theory of elasticity 

formulation principles. The boundaries /2z h   are free 

of transverse shear stresses and strains. 

  

 

 

REFERENCES 

[1] C.C. Ike and E.U. Ikwueze, “Ritz method for the analysis of statically 

indeterminate Euler-Bernoulli beams,” Saudi Journal of Engineering 

and Technology, Vol. 3, Issue 3, pp. 133 – 140, 2018. 

[2] C.C. Ike and E.U. Ikwueze, “Fifth degree Hermittian polynomial shape 
functions for the finite element analysis of clamped simply supported 

Euler-Bernoulli beam,” American Journal of Engineering Research, 

Vol. 7, Issue 4, pp. 97 – 105, 2018. 

[3] C.C. Ike, “Fourier sine transform method for the free vibration of 

Euler-Bernoulli beam resting on Winkler foundation,” International 

Journal of Darshan Institute on Engineering Research and Emerging 
Technologies (IJDI-ERET), Vol. 7, No. 1, pp. 1 – 6, 2018. 

[4] C.C. Ike, “Point collocation method for the analysis of Euler-Bernoulli 

beam on Winkler foundation,” International Journal of Darshan 
Institute on Engineering Research and Emerging Technologies (IJDI-

ERET), Vol. 7, No. 2, pp 1 – 7, 2018. 

[5] S.P. Timoshenko, “On the correction for shear of the differential 
equation for transverse vibration of prismatic bars,” Philosophical 

Magazine, Vol. 41 No. 6, pp. 742 – 746, 1921. 

[6] M. Levinson, “A new rectangular beam theory,” Journal of Sound and 
Vibration, Vol. 74 No. 1, pp. 81 – 87, 1981. 

[7] R.P. Shimpi, P.J. Guruprasad, and K.S. Pakhare, “Simple two variable 

refined theory for shear deformable isotropic rectangular beams,” 
Journal of Applied and Computational Mechanics, Vol. 6 No. 3, pp. 

394 – 415, 2020. 

[8] Y.M. Ghugal and R. Sharma, “A refined shear deformation theory for 

flexure of thick beams,” Latin American Journal of Solids and 

Structures, Vol. 8, pp. 183 – 195, 2011. 

[9] S.A. Ambartsumyan, “On the theory of bending of plates,” Izv Otd 

Tech Nauk ANSSSR, Vol. 5, pp. 67 – 77, 1958. 

[10] E.T. Kruszewski, Effect of transverse shear and rotary inertia on the 
natural frequency of a uniform beam. National Advisory Committee for 

Aeronautics Technical Note 1909 (NACA-TN-1909), pp. 1 – 16, 1949. 

[11] S.S. Akavci, “Buckling and free vibration analysis of symmetric and 
antisymmetric laminated composite plates on an elastic foundation,” 

Journal of Reinforced Plastics and Composites, Vol. 26 No 18, pp. 

1907 – 1919, 2007. 

[12] J.N. Reddy, “A general non-linear third order theory of plates with 

moderate thickness,” International Journal of Non-linear Mechanics, 

Vol. 25 No. 6, pp. 677 – 686, 1990. 

[13] S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd 

International Edition. Singapore: McGraw Hill, 1970. 

[14] C.C. Ike, “Ritz variational method for the flexural analysis of third 
order shear deformable beams,” Conference paper presented at 

Conference on Engineering Research Technology Innovation and 

Practice (CERTIP). Faculty of Engineering, University of Nigeria, 
Nsukka, 3rd – 6th November, 2020. 

[15] C.C. Ike and O.A. Oguaghamba, “Trigonometric shear deformation 

theory for the bending analysis of thick beams: Fourier series method,” 
Conference paper presented at Conference on Engineering Research 

Technology Innovation and Practice (CERTIP). Faculty of 

Engineering, University of Nigeria, Nsukka, 3rd – 6th November, 

2020. 

[16] C.C. Ike, Timoshenko beam theory for the flexural analysis of 

moderately thick beams – variational formulation and closed form 
solutions. Tecnica Italiana – Italian Journal of Engineering Science, 

Vol. 63 No. 1, pp. 34 – 45, 2019. 

[17] H.N. Onah, C.U. Nwoji, M.E. Onyia, B.O. Mama, and C.C. Ike, “Exact 
solutions for the elastic buckling problem of moderately thick beams,” 

Revue des Composites et des Materiaux Avances, Vol. 30, No. 2, pp. 

83 – 93, 2020. 

[18] C.C. Ike, C.U. Nwoji, B.O. Mama, H.N. Onah, and M.E. Onyia, 

“Laplace transform method for the elastic buckling analysis of 

moderately thick beams,” International Journal of Engineering 
Research and Technology, Vol. 12, No. 10, pp. 1626 – 1638, 2019. 



Ike et al. / Journal of Civil Engineering Frontiers Vol. 05, No. 02, pp. 55 –62, (2024) 

 

62 

[19] Y. Ghugal, A two-dimensional exact elasticity solution of thick beams. 

Departmental Report – 1. Department of Applied Mechanics, 

Government Engineering College, Aurangabad, India, pp 1 – 96, 2006. 

[20] Y.M. Ghugal and R.P. Shimpi, “A review of refined shear deformation 

theories for isotropic and anisotropic laminated beams,” Journal of 

Reinforced Plastics and Composites, Vol. 20 No. 3, pp. 255 – 272, 
2001. 

[21] P.R. Heyliger and J.N. Reddy, “A higher order beam finite element for 

bending and vibration problems,” Journal of Sound and Vibration, Vol. 
126 No. 2, pp. 309 – 326, 1988. 

[22] Y.M. Ghugal and A.G. Dahake, “Flexural analysis of deep beam 

subjected to parabolic loads using refined shear deformation theory,” 
Applied Computational Mechanics, Vol 6 No. 2, pp 163 – 172, 2012. 

[23] A.S. Sayyad, “Comparison of various shear deformation theories for 

the free vibration of thick isotropic beams,” Latin American Journal of 
Solids and Structures, Vol. 2 No 1, pp. 85 – 97, 2011. 

[24]  A.S. Sayyad, “Comparison of various refined beam theories for the 

bending and free vibration analysis of thick beams,” Applied and 
Computational Mechanics, Vol. 5, pp. 217 – 230, 2011. 


