
 

 

Vol. 05, No. 02, pp. 49 –54 (2024) 
ISSN: 2709-6904 

 

JOURNAL OF CIVIL ENGINEERING FRONTIERS  
 

www.jocivilef.org  

 

doi:10.38094/jocef50284 
49  

Deriving Ritz formulation for the Static Flexural Solutions of 

Sinusoidal Shear Deformable Beams 

 

 

Benjamin Okwudili Mama1, Onyedikachi Aloysius Oguaghamba1, Charles Chinwuba Ike2,*  

1Department of Civil Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria, (benjamin.mama@unn.edu.ng,  

aloysius.oguaghamba@unn.edu)  
2Department of Civil Engineering, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria, 

charles.ike@esut.edu.ng 

Corresponding email: charles.ike@esut.edu.ng  

 

Abstract 

This paper presents the Ritz variational method for the static bending analysis of sinusoidal shear deformable beams. The 

theory accounts for transverse shear deformation and satisfies transverse shear stress-free conditions at the top and 

bottom surfaces of the beam. The total potential energy functional for the thick beam bending problem is formulated and 

minimized using a Ritz procedure. The problem considered simply supported boundary conditions and two cases of 

loading – uniformly distributed load over the span and point load at the center. The function is a function of two unknown 

displacement functions constructed in terms of unknown generalized displacement parameters and shape functions that 

satisfy the boundary conditions. Ritz minimization of the functional is used to find the generalized displacement 

parameters and then the displacements w(x) and The displacements and stresses are found for the loading distributions 

considered. It is found that the results obtained agree remarkably well with the exact results obtained using the theory of 

elasticity. The differences between the present results and the exact solutions are less than 0.3% for maximum transverse 

displacement for both cases of loading considered. For uniform load over the beam, the result for l/t = 10 is 0.112% 

greater than the exact solution. For the point load at the center, the result for l/t = 10 is 4.468% greater than the exact 

solution. The increased difference in the point load case is due to the singular nature of the point load problem. 
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I. INTRODUCTION 

The Euler-Bernoulli beam flexure theory was formulated 
using the hypothesis of orthogonality of the plane cross-section 
of the beam to the neutral axis before and after bending 
deformation [1 – 4]. The implication is that warping of the 
cross-section and transverse shear deformation are disregarded 
in the formulation, limiting the scope of use to thin beams 
where transverse shear strains make insignificant contribution 
to the flexural behaviour [5 – 7]. Beam theories have been 
derived to account for transverse shear deformation effects by 
Timoshenko [8], Levinson [9], Ghugal and Shimpi [10], 
Shimpi et al [11], Heyliger and Reddy [12] and others. Ghugal 
[13] has presented closed form solutions for the flexural 

problem of thick beams using the two dimensional theory of 
elasticity. Timoshenko and Goodier [14] derived the exact 
solutions to the bending problems of thick beams using the 
mathematical theory of elasticity. Other contributors to thick 
beam theory are: Ghugal and Sharma [15], Ghugal and Dahake 
[16], Sayyad [17, 18], Reddy [19], Ambartsumyam [20], 
Kruszewski [21] and Akavci [22]. 

Ike [23] used the Fourier series method (FSM) to develop 
accurate solutions for the displacements and stresses in 
hyperbolic shear deformable thick beams (HSDTB) subjected 
to distributed transverse loads. The HSDTB equations 
formulated in the study satisfied the transverse shear stress-free 
boundary conditions at the top and bottom surfaces of the 
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beam, and thus did not require shear correction factors. The 
results for displacements and stresses obtained in the work 
were accurate and compared well with previous solutions in the 
literature. In another work, Ike [24] developed an analytical 
solution to the buckling of thick beams based on a cubic 
polynomial shear deformation beam theory (CPSDBT). The 
CPSDBT satisfied the transverse shear stress-free boundary 
conditions, and thus did not need shear correction factors. The 
work gave buckling load solutions that were accurate and in 
agreement with previous solutions in the literature. The work 
did not however consider bending analysis of thick beam 
problems. 

Mama et al [25], in a similar study, used Ritz variational 
method (RVM) for the bending analysis of thick beams 
formulated using trigonometric shear deformation beam 
bending theory (TSDBBT). Their formulation satisfied the 
transverse shear stress-free boundary conditions at the top and 
bottom surfaces. Their RVM results for stresses and 
displacements agreed with previous studies. 

This work presents the variational formulation of the thick 
beam bending problem that accounts for transverse shear 
deformation effects using the sinusoidal shear deformation 
theory. Thereafter, it presents the Ritz direct method for 
solving the resulting formulation for the case of simple 
supports at the ends and for the two cases of uniformly 
distributed loading and point load applied at the midspan of the 
beam. 

II. FORMULATION OF THE RITZ VARIATIONAL FUNCTIONAL 

FOR THE TRIGONOMETRIC SHEAR DEFORMABLE BEAM 

The paper considers homogeneous, elastic, isotropic beams 
subjected to transverse loads as shown in Figure 1. 

 

 
Fig. 1. Deep rectangular beam subjected to arbitrary loading q(x) 

 

The axial displacement u(x, z) and transverse displacement 

w(x, z) of trigonometric shear deformable beams are: 

( , ) ( , ) ( , ) sin ( )b s

dw t z
u x z u x z u x z z x

dx t

 
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  (1) 

where ( )x  is the warping function, ub is the bending 

component and us is the shear component of u(x, z). 

( , ) ( )w x z w x            (2) 

The normal strain xx  and shear strains xz  are: 

2
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The normal and transverse stresses are found from the stress-

strain relations as: 
2
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where xx  is the normal stress, xz  is the transverse stress. 

A. Total Potential Energy Functional   

The total potential energy functional for the thick beam 

flexure problem is found as: 
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Further simplification gives: 
2 22

1 22
0

1

2

l
d w d

F F
dxdx

     
     

  

    

   
2

2
3 42

( ) 2 ( ) ( )
d w d

F F x q x w x dx
dxdx

 
    



  (10) 

wherein 
/2

2
1

/2

t

t

F bEz dz EI



           (11) 

/2 2 3
2

2 2 2 2
/2

6
sin

2

t

t

Et z Ebt EI
F b dz

t



  

  
      (12) 

/2 3

3 3 3
/2

4 48
2 sin

t

t

zt z Ebt EI
F bE dz

t



     

  
     (13) 

/2
2

4

/2

cos
2

t

t

z GA
F Gb dz

t



          (14) 

Hence 
2 22 2

2 2 3 2
0

1 6 48

2

l
d w EI d EI d w d

EI
dx dxdx dx

             
      


   



Mama et al. / Journal of Civil Engineering Frontiers Vol. 05, No. 02, pp. 49 –54, (2024) 

 

51 

   
2

( ) 2 ( ) ( )
2

GA
x q x w x dx


   


 

   , ( ), ( ), ( ), ( )x w x x w x x          (15) 

 

III. METHODOLOGY 

The paper considers thick beams with simply supported 

ends as shown in Figure 1. The boundary conditions are: 
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Hence w(x) and ( )x  that satisfy the boundary conditions 

can be expressed using the infinite series: 
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wherein wi and i  are generalized displacement parameters 

for w(x) and ( )x  respectively. 

The static transverse load is similarly expressed in infinite 

Fourier sine series form as: 
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qi is the Fourier series coefficient of q(x) 

The functional to be minimized becomes expressed in terms of 

wi and i  as: 
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For equilibrium of the thick beam bending problem,   is 

minimized with respect to the unknown generalized 

displacements wi and .i  Thus, for minimization of ,  we 

require; 

0
iw





            (22) 

0
i





            (23) 

These conditions yield after simplification: 
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By Cramer’s rule 
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A. Axial Displacement u(x, z) 

Axial displacement is found as: 
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B. Transverse Displacement w(x) 

The transverse displacement w(x) is found at x = l/2 as 
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Axial bending stress xx  is formed as: 
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The transverse shear stress is: 
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IV. RESULTS 

The results are presented for the thick beam bending 

problem with material parameters E = 210GPa, 
37800kg/m   for simply supported ends and for two cases 

of loading – namely uniformly distributed load over the entire 

span and point load at the center. 

For uniformly distributed load of intensity q0 over the 

entire beam span, 
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For point load P0 at ,x     

2
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where   is the distance of the point load from the origin. 

For point load at the center, 
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2
sin

2
i

P i
q

l


            (40) 

The results are presented using non-dimensional 

representations for displacements and stresses defined as 

follows: 
4
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Ebh

q

b

q

b



  

  

           (41) 

, ,xx xzw    are dimensionless displacement, normal and shear 

stresses respectively. 

A measure of the deviation of the results from the two-

dimensional (2D) theory of elasticity solution is obtained as 

follows: 

%Difference =   

 
results Exact result (2D elasticity result)

100%
Exact result (2D elasticity result)

 
 

 
    

(42) 

The results obtained for the cases of uniformly distributed 

load and point load applied at the center are shown in Tables 1, 

2, 3, 4 which also presents previous results from other studies. 

 

V. DISCUSSION 

This paper has presented the Ritz variational method for 

the flexural analysis of thick simply supported beams 

described using the trigonometric shear deformation theory. 

The transverse loads considered are uniformly distributed 

loads over the entire beam span and point load acting at the 

center of the span. The functional for the thick beam bending 

problem was formulated as a function of two unknown 

functions and derivatives of the two unknown functions – 

Equation (15). The unknown functions to be found are 

considered in the form of single infinite series given by 

Equations (17) and (18) in terms of unknown generalized 

displacement parameters. The displacement functions are 

constructed to apriori satisfy all the conditions at the simply 

supported ends. The unknown functions are found using the 

condition for the extremum of the Ritz functional – Equations 

(22) and (23). 

Table 1 shows that for uniformly distributed load the 

present results for w(x = l/2, z = 0) when l/t = 10 is 0.187% 

different from the exact theory of elasticity solution which 

illustrates that the present result is more accurate than 

previous results by Reddy (0.25% difference), Timoshenko 

(0.25% difference), and Euler-Bernoulli (–2.190% difference). 

Similarly, Table 2 shows that for uniformly distributed loads, 

present results for ( /2, /2)xx x l z t     for l/t = 10 is just 

0.112% different from the Timoshenko and Goodier [14] 

exact solution obtained using the theory of elasticity. The 

result is more accurate than Timoshenko and Euler-Bernoulli 

results. 

Table 3 which presents the results for thick isotropic beam 

subjected to point load at the center of the span shows that 

present result for ( /2, 0)w x l z   for l/t = 10 is 0.288% 

different from the Timoshenko and Goodier solutions [14]. 

The table further shows the present method gives more 

accurate results then the Reddy, Timoshenko and Euler-

Bernoulli results. 

Table 4 presents the results for thick isotropic beam 

subjected to point load at the midspan. The present results for 

( /2, 0)xx x l z    for l/t = 10 is 4.468% different from the 

exact theory of elasticity solution obtained by Timoshenko and 

Goodier [14]. 
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VI. CONCLUSION 

1. The axial displacement u(x, z) is obtained as a 

convergent cosine series with infinite terms. 

2. The transverse displacement w(x) is maximum at x = l/2, 

z = 0 and is expressed as a convergent sine series with 

infinite terms. 

3. The axial bending stress xx  is obtained as a convergent 

infinite sine series. 

4. Maximum value of xx  is obtained at x = l/2, /2.z t   

5. The transverse shear xz  is obtained as an infinite cosine 

series. Maximum transverse shear stress xz  occurs at x 

= 0, z = 0 and is given in series form. 

6. The trigonometric shear deformation theory is 

variationally consistent, and transverse shear stress free 

conditions are satisfied at the beam surfaces, removing 

the need for transverse shear stress modification factors. 
 

TABLE I.  COMPARISON OF SOLUTIONS FOR AXIAL AND TRANSVERSE 

DISPLACEMENT FOR THICK ISOTROPIC BEAMS SUBJECTED TO UNIFORMLY 

DISTRIBUTED LOAD FOR DIFFERENT ASPECT RATIOS 

l/t Theory 
( ,

/ 2)

u x l

z t



 
  

% 

Difference 

( /2,

0)

w x l

z




  

% 

Difference 

2 

Present 2.259 2.682 2.529 3.098 

Reddy [9] 2.245 2.045 2.532 3.221 

Timoshenko [8] 2.000 –9.091 2.538 3.465 

Euler-Bernoulli 2.000 –9.091 1.563 –36.282 

Ambartsumyan 

[20] 
– – 2.357 –3.913 

Kruszewski [21] – – 2.215 2.527 

Akavci [22] – – 2.523 2.853 

Timoshenko and 

Goodier [14] 
2.200 0 2.453 0 

4 

Present 16.535 4.652 1.805 1.120 

Reddy [9] 16.504 4.456 1.806 1.176 

Timoshenko [8] 16.000 1.265 1.806 1.176 

Euler-Bernoulli 16.000 1.265 1.563 –12.437 

Ambartsumyan 

[20] 
– – 1.762 –1.288 

Kruszewski [21] – – 1.805 1.120 

Akavci [22] – – 1.804 1.064 

Timoshenko and 

Goodier [14] 
15.800 0 1.785 0 

10 

Present 251.35 0.745 1.601 0.187 

Reddy [9] 251.27 0.709 1.602 0.25 

Timoshenko [8] 250.00 0.200 1.602 0.25 

Euler-Bernoulli 250.00 0.200 1.563 –2.190 

Ambartsumyan 

[20] 
– – 1.595 –0.187 

Kruszewski [21] – – 1.602 0.25 

Akavci [22] – – 1.601 0.187 

Timoshenko and 

Goodier [14] 
249.50 0 1.598 0 

 

TABLE II.  COMPARISON OF SOLUTIONS FOR AXIAL BENDING STRESS 

xx  AT ( /2, /2)x l z t    AND TRANSVERSE SHEAR STRESS xz  (x = 0, z 

= 0) FOR THICK ISOTROPIC BEAM SUBJECTED TO UNIFORMLY DISTRIBUTED 

LOAD FOR VARIOUS ASPECT RATIOS 

l/t Theory xx   % Diff CR
xz   % Diff EE

xz   % Diff 

2 

Present 3.278 2.438 1.451 –3.267 1.250 –16.667 

Reddy [19] 3.261 1.960 1.415 –5.667 1.262 –15.867 

Timoshenko [8] 3.000 –6.25 0.984 –34.40 1.477 –1.533 

Ambartsumyan 

[20] 
3.210 0.312 1.156 –22.93 – – 

Kruszewski [21] 3.261 1.906 1.333 –11.13 – – 

Akavci [22] 3.253 1.656 1.397 –6.866 – – 

Euler-Bernoulli 3.000 –6.25 – – 1.477 –1.533 

Timoshenko and 

Goodier [14] 
3.200 0 1.500 0 1.500 0 

4 

Present 12.280 0.656 2.993 –0.233 2.783 –7.233 

Reddy [19] 12.263 0.516 2.908 –3.067 2.795 –6.833 

Timoshenko [8] 12.000 –1.693 1.969 –34.367 2.953 –1.567 

Ambartsumyan 

[20] 
12.212 0.098 2.389 –20.36 – – 

Kruszewski [21] 12.262 0.508 2.836 –5.466 – – 

Akavci [22] 12.254 0.442 2.882 –3.933 – – 

Euler-Bernoulli 12.00 –1.693 – – 2.953 –1.567 

Timoshenko and 

Goodier [14] 
12.20 0 3.000 0 3.00 0 

10 

Present 75.284 0.112 7.591 1.213 7.295 –2.733 

Reddy [19] 75.268 0.090 7.361 –1.853 7.304 –2.61 

Timoshenko [8] 75.00 –0.264 4.922 –34.373 7.383 –1.56 

Ambartsumyan 

[20] 
75.216 0.021 6.066 –19.12 – – 

Kruszewski [21] 75.266 0.088 7.328 –2.293 – – 

Akavci [22] 75.259 0.078 7.312 –2.506 – – 

Euler-Bernoulli 75.00 –0.264 – – 7.383 –1.56 

Timoshenko and 
Goodier [14] 

75.20 0 7.500 0 7.500 0 

TABLE III.  COMPARISON OF RESULTS FOR AXIAL DISPLACEMENT u  AT 

( , /2),x l z t     TRANSVERSE DISPLACEMENT w  AT (x = l/2, z = 0) FOR 

THICK ISOTROPIC BEAMS SUBJECTED TO POINT LOAD AT THE CENTER FOR 

VARIOUS ASPECT RATIOS 

l/t Theory/Reference u  
% 

Difference 
w  

% 

Difference 

2 

Present method 3.2776 – 4.3257 7.63 

Reddy [19] 3.2611 – 4.3399 7.899 

Timoshenko [8] 3.0001 – 4.4198 9.978 

Euler-Bernoulli 3.0001 – 2.5000 –37.792 

Timoshenko and 

Goodier [14] 
– – 4.0188 0 

4 

Present method 24.5591 – 2.9706 1.9948 

Reddy [19] 24.5263 – 2.9726 2.0635 

Timoshenko [8] 24.0007 – 2.9799 2.3142 

Euler-Bernoulli 24.0007 – 2.5000 –14.1631 

Timoshenko and 

Goodier [14] 
– – 2.9125 0 

10 

Present method 376.4214 – 2.5764 0.288 

Reddy [19] 376.3385 – 2.5765 0.292 

Timoshenko [8] 375.0122 – 2.5768 0.304 

Euler-Bernoulli 375.0109 – 2.5000 –2.686 

Timoshenko and 

Goodier [14] 
– – 2.5690 0 
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TABLE IV.  COMPARISON OF RESULTS FOR AXIAL BENDING STRESS xx  

AT ( /2, /2),x l z t    TRANSVERSE SHEAR STRESS 
CR
xxzz  (x = 0, z = 0), 

EE
xz  AT (x = 0, z = 0) FOR VARIOUS ASPECT RATIOS FOR POINT LOAD AT THE 

CENTER OF SPAN 

l/t Theory/Reference xx  % Diff CR
xz  % Diff EE

xz  
% 

Diff 

2 Present method 9.3101 67.907 1.5532 – 1.4347 – 

 Reddy [19] 9.3469 68.571 1.5059 – 1.4290 – 

 Timoshenko [8] 5.9065 6.523 1.0244 – 1.5367 – 

 Euler-Bernoulli 5.9065 6.523 – – 1.5367 – 

 
Timoshenko and 

Goodier [14] 
5.5448 0 – – – – 

4 Present method 28.7619 12.838 3.1253 4.177 2.9283 – 

 Reddy [19] 28.6790 12.513 3.0319 1.063 2.9284 – 

 Timoshenko [8] 23.6261 –7.311 2.0489 –31.703 3.0733 – 

 Euler-Bernoulli 23.6261 –7.311 – – 3.0733 – 

 
Timoshenko and 

Goodier [14] 
25.4896 0 3.0000 0 – – 

10 Present method 154.3242 4.468 7.8912 5.216 7.5636 – 

 Reddy [19] 154.0091 4.255 7.6519 2.025 7.5733 – 

 Timoshenko [8] 147.6634 –0.041 5.1223 –31.702 7.6834 – 

 Euler-Bernoulli 147.6630 –0.0412 – – 7.6834 – 

 
Timoshenko and 

Goodier [14] 
147.7239 0 7.500 0 – – 
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