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Abstract 

This paper presents the Galerkin-Kantorovich variational method for solving the Terzaghi’s one-dimensional consolidation equation for 

two-way drainage conditions. The solution was considered as an infinite series of known coordinate (shape) functions and unknown 

function ( )t  of time which we sought such that the resulting functional is minimized. The shape functions satisfied the hydraulic 

boundary conditions at the boundary of the consolidating soil. Galerkin-Kantorovich variational integral equation was thus formulated 

for the initial boundary value problem using residual minimization principles. The solution resulted in a system of first order ordinary 

differential equations in ( )n t  which was solved for ( ).n t  Orthogonalization principles were used to obtain the integration constants in 

terms of initial pore water pressure, thus yielding the general solution. Solutions for constant initial excess pore water pressure were 

obtained and found to be the closed-form solution. The solutions were presented in terms of global (average) degrees of consolidation and 

tabulated. The results obtained were exact and identical with results previously found using separation of variables techniques. 
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I. INTRODUCTION 

Consolidation is the time dependent process of dissipation of 
pore water pressures in saturated and partially saturated soils 
with low coefficients of hydraulic permeabilities due to external 
loads applied to the soil [1 – 3]. The process is important in 
foundation engineering analysis and design because of the 
resulting consolidation settlement which is time-dependent. 

There are many types of consolidation associated with the 
types of transient seepage namely: one-dimensional, two-
dimensional, three-dimensional, radial, and axisymmetric 
consolidation. Accordingly, various theories of soil 
consolidation have been presented. Some are: 

(i) Terzaghi’s one-dimensional (1D) consolidation theory 

(ii) Two-dimensional (2D) consolidation theory 

(iii) Three-dimensional (3D) consolidation theory 

(iv) Gibson’s theory [4] 

(v) Rendulic’s radial consolidation theory 

(vi) Biot’s consolidation theory 

(vii) Barron’s three-dimensional soil consolidation theory 
[5] 

The fundamental laws that are used in deriving the governing 
theories of the consolidation process are: Darcy’s law or the law 
of seepage flow, the continuity law and the soil mineral 
constitutive laws. Literature review shows that the soil 
consolidation problems have been solved using both analytical 
and numerical techniques.  

Analytical techniques that have been used are methods 
commonly used for solving partial differential equations (PDEs) 
and are the methods of separation of variables (product method) 
and eigenfunction expansion (Fourier series method) [6]. 
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Numerical techniques used for soil consolidation analysis 
are commonly used numerical methods for solving PDEs and 
they include finite element method (FEM), finite difference 
method (FDM), boundary element method (BEM) and 
differential quadrature method (DQM). 

Axisymmetric consolidation problems have been 
investigated by Leo [7], Barron [5], Ho et al [8], Zhou [9], Zhou 
and Tu [10], Conte [11], and Shi and Zhang [12]. 

Two-dimensional consolidation problems have been studied 
by Conte [11], and Ho et al [13]. 

One-dimensional consolidation problems have been studied 
for various assumptions of soil stress-strain behaviours, degrees 
of saturation, layering of soil and nature of applied loading by 
Zhou and Zhao [14]; Shan et al [15]; Zhou et al [16]; Ma et al 
[17]; Olek [3, 18]; Zhang et al [19]; Conte and Troncone [20]; 
Gibson [4]; and Ike [1]. 

Cao et al [21] have studied large-strain consolidation of soil. 
Radhika et al [22] have presented a review on consolidation 
theories and their applications. Further studies of soil 
consolidation are presented in Das [23] and Craig [24]. Wang et 
al [25] used elementary functions to express a simplified 
solution to one-dimensional consolidation with a threshold 
gradient. They obtained approximate solutions that violated the 
field equation but satisfied the boundary conditions. 

McDonald et al [26] solved Terzaghi’s one-dimensional (1-
D) soil consolidation equation using a finite difference method 
(FDM) and Microsoft Excel spreadsheet, a readily available 
computational tool. Their work used Microsoft Visual Basic 
Application (VBA) tool in Excel to write and run finite 
difference analysis routines of the 1-D soil consolidation 
equation. 

Zhang et al [27] used the Laplace transformation method to 
obtain classical solutions to the Terzaghi one-dimensional soil 
consolidation problem for impermeable bottom boundary and 
simplified assumption for initial and boundary conditions. 

This paper applies the Galerkin-Kantorovich method to 
solve the Terzaghi’s one-dimensional consolidation equation for 
two way drainage conditions and constant initial excess pore 
water pressure distribution. 

II. GOVERNING EQUATION OF TERZAGHI’S 1D CONSOLIDATION 

EQUATION 

The partial differential equation for 1D consolidation in the z 

direction is [1, 3]: 
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cz is the coefficient of 1D consolidation in the z direction, kz 
is  the  hydraulic permeability coefficient in the z coordinate 

direction, mv is the volume compressibility coefficient, w  is 

the weight density of water, ue(z, t) is the excess pore water 
pressure variation with depth and time in the consolidating soil, 
t is time, z is the depth coordinate. 

A. Problem considered – consolidation of clay soil bounded 

by two layers of permeable soil 

The paper considers the consolidation under double-drainage 

conditions shown in Figure 1. 

 

 

Fig. 1. Clay soil consolidating under uniform pressure and double drainage 

conditions. 

 

The initial conditions are 

 ( , 0) ( , 0)e eu z t u z= =         (3) 

for 0 2z H    

wherein ( , 0)eu z  is the known initial pore water pressure 

distribution at the start of the consolidation process. 

The boundary conditions are: 

 ( 0, ) 0eu z t= =   for 0,t t →        (4) 

 ( 2 , ) 0eu z H t= =   for 0,t t →       (5) 

 

III. GALERKIN METHOD 

The Galerkin method is a numerical method that seeks an 

approximate solution for the unknown function u to a 

differential equation of the form: 

Lu p=             (6) 

where L is the differential operator and p is forcing 

function. 

The approximation to u is sought in terms of a linear 

combination of coordinate (basis) functions Ni as: 
n

i i
i

u N u
=

=
1

          (7) 

and ui are the unknown quantities that need to be found, u  is 

approximation to u, n is the number of coordinate functions 

used in the approximation. 

 Substitution of the approximation for u given by Equation 

(2) in Equation (1) gives an error function, e : 

 Lu p e− =            (8) 

 The Galerkin method equation is built on the assumption 

that the weighted average error of the approximation should be 

zero. 

 This yields: 
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 ( )

v v

e wdv Lu p wdv= −         (9) 

where w is the weighting function, v denotes the domain of 

integration. 

 ( ) )i i

v

L N u p w dv −         (10) 

 i i

v v

LN u wdv pwdv =         (11) 

 The weight function can be approximated using the same 

coordinate functions as the assumed approximation. 

 The Galerkin equations become the system of equations: 

 i i j j

v v

LN u N dv pN dv =       (12) 

, ,. . . , , , ,. . . , .i n j n= =1 2 1 2    

IV. GALERKIN-KANTOROVICH VARIATIONAL INTEGRAL 

FORMULATION AND GENERAL SOLUTION OF THE PROBLEM 

By the Galerkin-Kantorovich variational method, the 

solution for the unknown excess pore water pressure 

distribution ue(z, t) in the governing PDE is assumed in terms 

of an infinite series of coordinate (shape) functions that satisfy 

the boundary conditions at z = 0, and z = 2H and unknown 

functions of time. Thus, 

 
1
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n
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where ( )n z  is the coordinate (shape) function that satisfies 

the boundary conditions in Equations (4) and (5). 

Hence, ( ) sin
2

n

n z
z

H


 =          (14) 

The Galerkin-Kantorovich variational integral equation for 

the problem is constructed from: 
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where R(z, t) is the Residual function. 

Thus, 
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Simplifying, 
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From the orthogonality property of sin ,
2
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Hence the condition for nontrivial solutions of Equation (17) is 

the first order linear differential equation: 
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2

n
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c t

dt H
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Solving using the classical methods for solving first order 

differential equation gives: 
2
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where an is the integration constant. 

The general solution is then obtained as: 
2

1
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2 2
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V. RESULTS 

A. General Results for ue(z, 0) 

In order to obtain results for known initial excess pore water 

pressure variations, an needs to be evaluated. For t = 0, in 

Equation (22) 
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Multiplying both sides of Equation (23) by sin
2

m z

H


 and 

integrating with respect to z over the domain of the 

consolidation soil, we obtain an from this orthogonalization 

process in Fourier series theory. 
2 2

10 0
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n m  gives trivial solutions while n = m gives nontrivial 

solutions as: 
2 2
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The general solution when the ue(z, 0) is given then becomes: 
2 2

1 0

1
( , ) ( , 0)sin sin exp

2 2 2

H
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            …(27) 

The analytical expression obtained for ue(z, t) agrees 

perfectly well with other expressions previously obtained by 

other scholars using the method of separation of variables. The 

result is identical with closed form expressions. 

B. Result For Constant Initial Excess Pore Water Pressure 

Variation In The Consolidating Soil 

Here, 0( , 0)eu z u=           (28) 

Then, by substitution of ue(z, 0) in Equation (19) 
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Evaluating the integral and simplifying,  
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Local degree of consolidation, Uz  

This is obtained from  
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Thus, 
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Average (global) degree of consolidation, U 

This is obtained from 
2
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1
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Thus, 
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Table 1 shows the values of U for assumed values of Tv for the 

two-way drainage of 1D consolidating soil for the case of 

constant initial excess pore water pressure variation. The table 

shows the obtained results agree with previous results by Ike 

[1] and other scholars. 

 

TABLE I.  TIME FACTOR TV – AVERAGE DEGREE OF CONSOLIDATION U 

TABLE FOR 1D CONSOLIDATION WITH DOUBLE DRAINAGE AND CONSTANT 

INITIAL PORE WATER PRESSURE 

U Tv (present study) Tv (Ike [1]) 

0 0 0 

5 0.00196 0.00196 

10 0.00785 0.00785 

15 0.0177 0.0177 

20 0.0314 0.0314 

25 0.0491 0.0491 

30 0.0707 0.0707 

35 0.0962 0.0962 

40 0.1257 0.1257 

45 0.159 0.159 

50 0.196 0.197 

55 0.239 0.239 

60 0.2827 0.2827 

65 0.3404 0.3404 

70 0.4028 0.4028 

75 0.4767 0.4767 

80 0.5671 0.5671 

85 0.6837 0.6837 

90 0.848 0.848 

95 1.129 1.129 

100     

 

VI. DISCUSSION 

This paper has presented the Galerkin-Kantorovich 

variational method for solving the Terzaghi 1D soil 

consolidation equation for two-way drainage and constant 

initial excess pore water pressure variation. The governing PDE 

was expressed in variational form using weighted residual 

techniques.  

Solving the variational formulation resulted in a first order 

ODE which was solved to obtain ( )n t  as the exponential 

decay function of time given in Equation (21). The general 

solution to the PDE is found as Equation (22). The general 

solution to the PDE is found in terms of the initial pore water 

pressure ue(z, 0) as Equation (27). 

Equation (27) is a closed form expression for the solution 

since the governing equation is satisfied identically at all points 

0 2z H   in the consolidating soil as well as on the 

boundaries z = 0, and z = 2H. The obtained expression – 

Equation (27) – is identical with expression obtained earlier by 

Ike [1], Das [23], and Craig [24]. 

The solution for constant initial excess pore water pressure 

is obtained in dimensionless form as Equation (32). The 

solution for constant initial excess pore water pressure is 

presented in terms of average degree of consolidation as 

Equation (36). 

Equation (36) is presented as Table 1 which also presents the 

results obtained by Ike [1]. Table 1 shows the present results for 

U vs Tv agree identically with previous results obtained using 

other techniques by other researchers. 

 

VII. CONCLUSION 

In conclusion, 

(i) The Galerkin-Kantorovich variational method converts 

the Terzaghi 1D consolidation problem which is a 

boundary value problem to an integral equation. 

(ii) The present method gave exact solutions to the problems 

since the exact shape functions were used for the unknown 

( ).n z   
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(iii) The general solution obtained for ue(z, t) in terms of ue(z, 

0) could be used to find solutions for ue(z, t) once  the 

mathematical function for ue(z, t) is given or known. 

(iv) The method gave exact mathematical solutions for ue(z, t) 

in the boundary value problem (BVP) solved, and the 

exact solutions for the average degree of consolidation. 

(v)  The results obtained are identical to previous results. 
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