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Abstract

This paper presents the Galerkin-Kantorovich variational method for solving the Terzaghi’s one-dimensional consolidation equation for
two-way drainage conditions. The solution was considered as an infinite series of known coordinate (shape) functions and unknown
function ¢(t) of time which we sought such that the resulting functional is minimized. The shape functions satisfied the hydraulic
boundary conditions at the boundary of the consolidating soil. Galerkin-Kantorovich variational integral equation was thus formulated
for the initial boundary value problem using residual minimization principles. The solution resulted in a system of first order ordinary
differential equations in ¢,(t) which was solved for ¢,(t). Orthogonalization principles were used to obtain the integration constants in
terms of initial pore water pressure, thus yielding the general solution. Solutions for constant initial excess pore water pressure were
obtained and found to be the closed-form solution. The solutions were presented in terms of global (average) degrees of consolidation and
tabulated. The results obtained were exact and identical with results previously found using separation of variables techniques.
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(iv) Gibson’s theory [4]
(v) Rendulic’s radial consolidation theory
(vi) Biot’s consolidation theory

. INTRODUCTION

Consolidation is the time dependent process of dissipation of
pore water pressures in saturated and partially saturated soils

with low coefficients of hydraulic permeabilities due to external (vii) Barron’s three-dimensional soil consolidation theory
loads applied to the soil [1 — 3]. The process is important in  [5]

foundation engineering analysis and design because of the The fundamental laws that are used in deriving the governing
resulting consolidation settlement which is time-dependent. theories of the consolidation process are: Darcy’s law or the law

of seepage flow, the continuity law and the soil mineral
constitutive laws. Literature review shows that the soil
consolidation problems have been solved using both analytical
and numerical techniques.

There are many types of consolidation associated with the
types of transient seepage namely: one-dimensional, two-
dimensional, three-dimensional, radial, and axisymmetric
consolidation.  Accordingly, various theories of soil
consolidation have been presented. Some are: Analytical techniques that have been used are methods
commonly used for solving partial differential equations (PDES)
. ] . L and are the methods of separation of variables (product method)
(i) - Two-dimensional (2D) consolidation theory and eigenfunction expansion (Fourier series method) [6].

(iii) Three-dimensional (3D) consolidation theory

(i) Terzaghi’s one-dimensional (1D) consolidation theory
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Numerical techniques used for soil consolidation analysis
are commonly used numerical methods for solving PDEs and
they include finite element method (FEM), finite difference
method (FDM), boundary element method (BEM) and
differential quadrature method (DQM).

Axisymmetric  consolidation problems have been
investigated by Leo [7], Barron [5], Ho et al [8], Zhou [9], Zhou
and Tu [10], Conte [11], and Shi and Zhang [12].

Two-dimensional consolidation problems have been studied
by Conte [11], and Ho et al [13].

One-dimensional consolidation problems have been studied
for various assumptions of soil stress-strain behaviours, degrees
of saturation, layering of soil and nature of applied loading by
Zhou and Zhao [14]; Shan et al [15]; Zhou et al [16]; Ma et al
[17]; Olek [3, 18]; Zhang et al [19]; Conte and Troncone [20];
Gibson [4]; and Ike [1].

Cao et al [21] have studied large-strain consolidation of soil.
Radhika et al [22] have presented a review on consolidation
theories and their applications. Further studies of soil
consolidation are presented in Das [23] and Craig [24]. Wang et
al [25] used elementary functions to express a simplified
solution to one-dimensional consolidation with a threshold
gradient. They obtained approximate solutions that violated the
field equation but satisfied the boundary conditions.

McDonald et al [26] solved Terzaghi’s one-dimensional (1-
D) soil consolidation equation using a finite difference method
(FDM) and Microsoft Excel spreadsheet, a readily available
computational tool. Their work used Microsoft Visual Basic
Application (VBA) tool in Excel to write and run finite
difference analysis routines of the 1-D soil consolidation
equation.

Zhang et al [27] used the Laplace transformation method to
obtain classical solutions to the Terzaghi one-dimensional soil
consolidation problem for impermeable bottom boundary and
simplified assumption for initial and boundary conditions.

This paper applies the Galerkin-Kantorovich method to
solve the Terzaghi’s one-dimensional consolidation equation for
two way drainage conditions and constant initial excess pore
water pressure distribution.

Il. GOVERNING EQUATION OF TERZAGHI’S 1D CONSOLIDATION
EQUATION

The partial differential equation for 1D consolidation in the z
direction is [1, 3]:

c a2ue(z, t)  Ou.(z1)
Lo ot

1)

where ¢, =

2

mVYW ( )
c; is the coefficient of 1D consolidation in the z direction, k,
is the hydraulic permeability coefficient in the z coordinate
direction, my is the volume compressibility coefficient, vy,, is
the weight density of water, ue(z, t) is the excess pore water
pressure variation with depth and time in the consolidating soil,

t is time, z is the depth coordinate.
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A. Problem considered — consolidation of clay soil bounded
by two layers of permeable soil

The paper considers the consolidation under double-drainage

conditions shown in Figure 1.

permeable

I
bl byl

boundary
2H clay
permeable
boundary

Fig. 1. Clay soil consolidating under uniform pressure and double drainage
conditions.

The initial conditions are
U (z,t =0) =u,(z0)

for0<z<2H

wherein u,(z,0) is the known initial pore water pressure

distribution at the start of the consolidation process.
The boundary conditions are:
U (z=0,t)=0 fort>0,t—>

U (z=2H,t)=0

®)

(4)
®)

fort>0,t >

I1l. GALERKIN METHOD

The Galerkin method is a numerical method that seeks an
approximate solution for the unknown function u to a
differential equation of the form:

Lu=p (6)

where L is the differential operator and p is forcing
function.

The approximation to u is sought in terms of a linear
combination of coordinate (basis) functions N; as:

n
i=1

and u; are the unknown quantities that need to be found, u is
approximation to u, n is the number of coordinate functions
used in the approximation.

Substitution of the approximation for u given by Equation
(2) in Equation (1) gives an error function, e :

Li-p=¢ @)

The Galerkin method equation is built on the assumption
that the weighted average error of the approximation should be
zero.

This yields:
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©)

J.“[J'Ewdv = I{I(Lﬂ —p)wdv

where w is the weighting function, v denotes the domain of
integration.

[IJ@Z Ny, ~pyw)av (10)
([ LNy wav = [[[ pwav (12)

The weight function can be approximated using the same
coordinate functions as the assumed approximation.
The Galerkin equations become the system of equations:

S[[[ LN Ny dv = [[[ pN; dv (12)

i=12...,n j=12...,n
IV. GALERKIN-KANTOROVICH VARIATIONAL INTEGRAL
FORMULATION AND GENERAL SOLUTION OF THE PROBLEM

By the Galerkin-Kantorovich variational method, the
solution for the unknown excess pore water pressure
distribution ue(z, t) in the governing PDE is assumed in terms
of an infinite series of coordinate (shape) functions that satisfy
the boundary conditions at z = 0, and z = 2H and unknown
functions of time. Thus,

Ug (2,1) = D 0 ()0 (2)
n=1
where ¢,(z) is the coordinate (shape) function that satisfies
the boundary conditions in Equations (4) and (5).

(13)

. Nmz
Hence, Z) =sin— 14
on(2) o (14)

The Galerkin-Kantorovich variational integral equation for
the problem is constructed from:

2H
| Rz ¢n(2)dz =0 (15)
0
where R(z, t) is the Residual function.
Thus,
2H( 2
J -> MJcm(ﬂj o(t) sin ™ lsin 2™ 4, — o
= dt 2H 2H 2H
...(16)
Simplifying,
2 d(p”(t) Z( ) o(t) jsm sin ™4, -0
ol dt H
...(17)
From the orthogonality property of sin %
2 onm . mmz
Iy = | sin—sin—-dz=0 ifnzm 18
o £ 2H ™ 2H (18)
2H
I = sinsin™™ 471 ifn=m (19)
0 H H
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Hence the condition for nontrivial solutions of Equation (17) is
the first order Iinear differential equation:
den(®) |
t)=0
dt 2H on(t) =

Solving using the classical methods for solving first order
differential equation gives:

(20)

2
nm
t)=a,exp| —-| — | c,t 21
on(t) =2, %ﬁbH]ZJ (21)
where a, is the integration constant.
The general solution is then obtained as:
0 2
Ug(z,1) = D a, exp —(ﬂj c,t [sin—— (22)
o 2H

V. RESULTS

A. General Results for ue(z, 0)

In order to obtain results for known initial excess pore water
pressure variations, a, needs to be evaluated. For t = 0, in
Equation (22)

u.(z,t=0 a, sm
a1=0)= Taysin

=U,(z,0) (23)

Multiplying both sides of Equation (23) by sin% and

integrating with respect to z over the domain of the
consolidation soil, we obtain a, from this orthogonalization
process in Fourier series theory.

2H 2H
. mmnz
Ue(z,0)sin——dz = a, sm—sm—dz 24
I (2 0)sin o J Z 2H  2H (24)
0 0 n=l
n=m gives trivial solutions while n = m gives nontrivial
solutions as:
2 nmz 2, 2 nnz >
I U (z,0)sin——dz = > a, j sin? ——dz = daH (25
2H - H -
0 n=l 0 n=1
12
== j Ue (2, O)sm—dz (26)

The general solution when the ue(z, 0) is given then becomes:

Z 1 Z.Fu (z, O)S|n—dz sin 7™ ox (n—n)zct
S\H T 2H 2n P T\2n )
@7

The analytical expression obtained for ue(z, t) agrees
perfectly well with other expressions previously obtained by
other scholars using the method of separation of variables. The
result is identical with closed form expressions.

Ug(z,t) =

B. Result For Constant Initial Excess Pore Water Pressure
Variation In The Consolidating Soil

Here, Uy (z,0) = ug
Then, by substitution of ue(z, 0) in Equation (19)

(28)
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2H 2
1 nm
Up(z,t) =D uosm—dz sm—exp (—j c,t
¢ nzl(H J 2H 2H 2H)

0
...(29)
Evaluating the integral and simplifying,

= 2Ug . nnz nm \?
U.(z,t)= > — (L —cosnxw)sin—exp| -| — | c,t 30
e (2 1) nZ:lrm( m) o p{(ij z] (30)
Let N =T (31a)
2
c,t
and -%- el =T, (31b)
Then,
Ue(z,1) = Z sm—exp( N2T,) (32)
Local degree of consolidation, U,
This is obtained from
U, =1- %Y (33)
Uo
Thus,
2 Nz 2
—sin—exp(—N“T, 34
nZ::N o exP(-N"T,) (34)
Average (global) degree of consolidation, U
This is obtained from
1 2
oH J' Ug (z,t)dz
U=1- 0 (35)
Up
Thus,
U=1- Z—exp( N2T,) (36)

n-1 N

Table 1 shows the values of U for assumed values of T, for the
two-way drainage of 1D consolidating soil for the case of
constant initial excess pore water pressure variation. The table
shows the obtained results agree with previous results by Ike
[1] and other scholars.

TABLE I. TIME FACTOR T, — AVERAGE DEGREE OF CONSOLIDATION U
TABLE FOR 1D CONSOLIDATION WITH DOUBLE DRAINAGE AND CONSTANT
INITIAL PORE WATER PRESSURE

U Tv (present study) Ty (Ike [1])
0 0 0

5 0.00196 0.00196
10 0.00785 0.00785
15 0.0177 0.0177
20 0.0314 0.0314
25 0.0491 0.0491
30 0.0707 0.0707
35 0.0962 0.0962

32

40 0.1257 0.1257
45 0.159 0.159
50 0.196 0.197
55 0.239 0.239
60 0.2827 0.2827
65 0.3404 0.3404
70 0.4028 0.4028
75 0.4767 0.4767
80 0.5671 0.5671
85 0.6837 0.6837
90 0.848 0.848
95 1.129 1.129
100 0 o0
VI. DISCUSSION
This paper has presented the Galerkin-Kantorovich
variational method for solving the Terzaghi 1D soil

consolidation equation for two-way drainage and constant
initial excess pore water pressure variation. The governing PDE
was expressed in variational form using weighted residual
techniques.

Solving the variational formulation resulted in a first order
ODE which was solved to obtain ¢, (t) as the exponential

decay function of time given in Equation (21). The general
solution to the PDE is found as Equation (22). The general
solution to the PDE is found in terms of the initial pore water
pressure Ue(z, 0) as Equation (27).

Equation (27) is a closed form expression for the solution
since the governing equation is satisfied identically at all points
0<z<2H in the consolidating soil as well as on the
boundaries z = 0, and z = 2H. The obtained expression —
Equation (27) —is identical with expression obtained earlier by
Ike [1], Das [23], and Craig [24].

The solution for constant initial excess pore water pressure
is obtained in dimensionless form as Equation (32). The
solution for constant initial excess pore water pressure is
presented in terms of average degree of consolidation as
Equation (36).

Equation (36) is presented as Table 1 which also presents the
results obtained by Ike [1]. Table 1 shows the present results for
U vs Ty agree identically with previous results obtained using
other techniques by other researchers.

VII. CONCLUSION

In conclusion,

(i) The Galerkin-Kantorovich variational method converts
the Terzaghi 1D consolidation problem which is a
boundary value problem to an integral equation.

(if) The present method gave exact solutions to the problems

since the exact shape functions were used for the unknown

on (2)-
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(iii) The general solution obtained for ue(z, t) in terms of ue(z,

(iv)

v)

(1]
[2]
(3]
(4]

[5]

(6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

0) could be used to find solutions for ue(z, t) once the
mathematical function for ue(z, t) is given or known.

The method gave exact mathematical solutions for ue(z, t)
in the boundary value problem (BVP) solved, and the
exact solutions for the average degree of consolidation.

The results obtained are identical to previous results.
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