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Abstract 

This article deals with the study of predicting the confinement effect of carbon fiber reinforced polymers (CFRPs) on concrete cylinder 

strength using metaheuristics-based artificial neural networks. A detailed database of 708 CFRP confined concrete cylinders is developed 

from previously published research with information on eight parameters, including geometrical parameters like the diameter (d) and 

height (h) of a cylinder, unconfined compressive strength of concrete (𝒇𝒄𝒐
′ ), thickness (nt), the elastic modulus of CFRP (Ef), unconfined 

concrete strain (𝛆𝐜𝐨), confined concrete strain (𝛆𝐜𝐜) and the ultimate compressive strength of confined concrete (𝒇𝒄𝒄
′ ). Three metaheuristic 

models are implemented, including particle swarm optimization (PSO), grey wolf optimizer (GWO), and bat algorithm (BA). These 

algorithms are trained on the data using an objective function of mean square error, and their predicted results are validated against 

experimental studies and finite element analysis. The study shows that the hybrid PSO model predicted the strength of CFRP-confined 

concrete cylinders with a maximum accuracy of 99.13% and GWO predicted the results with an accuracy of 98.17%. The high accuracy 

of axial compressive strength predictions demonstrated that these prediction models are a reliable solution to the empirical methods. The 

prediction models are especially suitable for avoiding full-scale, time-consuming experimental tests that make the process quick and 

economical. 
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I. INTRODUCTION 

Fiber-reinforced polymer is a composite material comprising 
fibers of either glass, aramid, or carbon and a polymer matrix. 
These fibers improve the properties of the polymer matrix 
mechanically including its stiffness and strength. The popularity 
of these composites has increased significantly in civil 
engineering due to their ability to strengthen concrete structural 
members. FRPs can be used either as a bar or plates embedded 
in concrete as an internal reinforcement and can be used as an 

external reinforcement by wrapping FRP sheets to existing 
structural members. The FRP bars have significantly higher 
strength than the steel reinforcement bars. They are highly 
durable and resistant to chemicals, corrosion [1], [2], [3], [4], 
[5], and radiation, their higher strength-to-weight ratio [6] 
makes them ideal for structures that require high strength but 
need not be heavy. They can be molded into any required shape 
that provides higher design flexibility. Moreover, it has a lower 
environmental impact [7], unlike concrete and timber.  

http://jastt.org/index.php/index
http://www.jocivilef.org/
https://doi.org/10.38094/jocef40271
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The load-carrying capacity of concrete structures is reduced 
by earthquakes or by the action of the freeze-thaw cycle, 
carbonation, chemical exposure, etc. Replacing a structural 
member is not a workable solution in an existing structure. The 
reduced load-carrying capacity can be improved by providing 
lateral confinement to the structural member using CFRP as 
external reinforcement [8]. Lateral confinement increases the 
axial compressive strength of structural members by developing 
a triaxial stress field. External confinement of structural 
members is a common way of retrofitting concrete columns [9]. 
Many empirical models have been developed on the 
compressive strength of the concrete confined using FRP. The 
performance of structural members depends on the material 
properties of CFRP, including its type, strength, elastic modulus, 
its thickness, and number of layers used for lateral confinement 
of members [10]. The lateral confinement slows the collapse of 
concrete columns by reducing the rate of spalling of concrete 
cover [11]. CFRP retrofitting of concrete members has been 
proven to be successful in improving ductility, stiffness, and 
load-carrying capacity. Hadi and Le [12] prepared four groups 
of columns, including unwrapped specimens and three groups of 
columns wrapped with CFRP with different fiber orientations. 
Each fiber orientation resulted in increased ductility and strength 
as compared to the unwrapped samples. The effect of CFRP on 
the performance of non-reinforced concrete was studied by Cao 
et al. [13], and they discovered an increase in the ultimate load-
carrying capacity of unreinforced members with an increase in 
the number of CFRP sheets wrapped around the member. The 
compressive behavior of ultra-high-performance concrete in 
circular columns confined by FRP was studied by Liao et al. 
[14]. An extensive database of 117 was prepared on ultra-high-
performance concrete confined with FRP by Liao et al. [15] to 
estimate the stress and strain relationship under axial 
compression. Partial wrapping of FRP has been used by Liao et 
al. [16] instead of full wrapping to determine the performance of 
concrete columns confined with FRP spiral strips. This partial 
confinement resulted in increased ultimate axial stress and strain 
and improved the fire resistance. 

Machine learning is becoming popular due to its ability to 
make accurate predictions about the performance of structural 
members [17], [18], [19], [20]. Researchers have used ANN and 
hybrid ANN for predicting the strength of materials. Previous 
research shows that the behavior of the FRP concrete can be 
predicted much better using machine learning models, including 
ANNs, support vector machines (SVMs), and metaheuristic 
algorithms. The behavior of FRP-reinforced concrete is complex 
and depends not only on the material but also on the skill of the 
worker. The behavior of FRP bars depends on multiple physical 
parameters such as concrete strength, type of fiber, bar diameter, 
fineness of sand, and shear lag effect [21]. This develops a very 
complex relationship between the parameters that change 
significantly with the type of FRP used [21]. Machine learning 
provides a reliable solution to this problem by developing a 
relationship between the parameters depending on the results 
from the experimental work. These relations are used by the 
models to predict the behavior of the FRP more properly than 
the empirical methods that were developed from small 
databases. [22] predicted the ultimate strength of rectangular 
columns using a hybrid machine-learning approach. [23] used a 
hybrid ANN based on an artificial bee colony for evaluating the 

bond strength of FRP concrete. Researchers have used hybrid 
ANN for the optimization of structural members. Jia et al. [24] 
have used three metaheuristics-based models to determine the 
numerical performance of debonding strength in FRP 
composites. Metaheuristics-based ANN models were used to 
determine the effect of an alkaline concrete environment on the 
durability of GFRP bars by Khan et al. [25], [26], and 
degradation of GFRP tensile strength was determined using 
three different hybrid ANN models. A novel hybrid machine 
learning model of response surface model coupled with support 
vector regression was used by Keshtegar et al. [27] to predict the 
ultimate condition of the concrete confined with FRP. Yan et al. 
[28] have used a genetic algorithm-based ANN model to 
estimate the bond strength of GFRP bars in concrete.  

The studies by [29] on fiber orientation's impact on plain 
concrete cylinders confined with FRP laminates and [30] 
exploring 3D-printed concrete through explainable artificial 
intelligence contribute valuable insights. [31] also innovatively 
employed geophysical methods, aligning with a 
multidisciplinary approach to predicting material behavior. 
Furthermore, insights into material enhancements [32] echo the 
focus on strengthening concrete with composite materials. 

Existing research is focused on empirical models using a 
small experimental dataset that lacks all the combinations of the 
variables involved. In the present study, three metaheuristics 
algorithms, including particle swarm optimization (PSO), grey 
wolf optimizer (GWO), and bat algorithm (BA) were combined 
with ANN to develop three hybrid ANN models that were 
trained on 708 carbon fiber reinforced polymer (CFRP) confined 
concrete cylinders dataset to predict the strength of confined 
concrete. In this study, the results of the hybrid models are 
validated using the finite element analysis (FEA) employing 
ABAQUS for the experimental data of 18 CFRP-wrapped 
cylinders. All three hybrid ANN models are trained and tested 
utilizing an objective function of mean square error (MSE). 
Proposed hybrid models of PSO and GWO predicted the axial 
compressive strength of CFRP concrete with the highest 
accuracy than the empirical models. The high accuracy of the 
prediction models is useful in replacing the long and tedious 
experimental process and is also helpful for analyses and design 
of CFRP-confined members. 

CONFINEMENT MECHANICS 

The FRP confinement enhances the strength and durability 
of the concrete [33], [34], [35], [36]. It increases the lateral 
pressure on the concrete, which reduces its lateral expansion and 
improves axial strength. Various researchers have provided 
strength models for the FRP confined concrete [37]. The 
confinement mechanics of FRP confined concrete have been 
defined using some common parameters, including hoop rupture 
strain of fibers, strain ratio, confinement stress, and confinement 
stiffness ratio. Lim et al. [38] used genetic programming to 
develop a model for the FRP-confined concrete to predict the 
ultimate conditions of the FRP concrete. They established 
expressions for estimating hoop rupture strain (𝜀ℎ,𝑟𝑢𝑝) of FRP 

against the maximum tensile strength of fibers ( 𝜀𝑓 ) using 

Equation Error! Reference source not found.. 
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𝜀ℎ,𝑟𝑢𝑝 =  (
𝜀𝑓

𝑓𝑐𝑜
′0.125)  () 

Previous models developed by Richart et al. [39] and 
Newman and Newman [40] used lesser parameters for the 
geometrical and mechanical properties, making them unreliable 
for future studies. The existing models provided a poor 
prediction of the test results for axial strain at compressive 
strength of confined concrete. The empirical model proposed by 
Lam and Teng [41] provided a simple design-oriented stress-
strain model for axial strain and compressive strength. The 
models of Lam and Teng [41] were changed a little bit by the 
ACI and were added to the ACI 440.2R-08 design guidelines. 
The empirical strength model developed by Teng et al. [42] 
presented the equations for the strain ratio and confinement 
stiffness ratio as given in Equations Error! Reference source 
not found. and Error! Reference source not found.. 

𝘱𝜖 =  
𝜖ℎ,𝑟𝑢𝑝

𝜖𝑐𝑜
  () 

𝘱𝑘 =
2𝐸𝑓𝑡

(
𝑓𝑐𝑜

′

𝜖𝑐𝑜
)𝐷

 () 

where 𝘱𝜖 and 𝘱𝑘 are the strain ratio and confinement stiffness 
ratio, respectively, Ef is the elastic modulus of FRP sheets in the 
transverse direction, t is the thickness of sheets, 𝜖𝑐𝑜 is the axial 
strain of unconfined concrete and 𝑓𝑐𝑜

′  is the compressive 
strength of the unconfined concrete. The relation of the 
maximum confinement stress based on the confinement 
mechanics of the CFRP sheets, as illustrated in Fig.  1, is as 
follows: 

𝑓𝑐𝑜
′ =

2𝐸𝑓𝜀ℎ,𝑟𝑢𝑝𝑡

𝐷
 () 

 

Fig. 1. Confinement mechanics of CFRP. 

 

ARTIFICIAL NEURAL NETWORK 

A neural network is a machine-learning model inspired by 
the structure and function of the human brain. It is composed of 
interconnected artificial neurons that can be trained to recognize 
patterns and make predictions on input data. The basic building 
block of a neural network is the artificial neuron, which takes 
one or more inputs, performs a computation on them, and 

produces one output. A feedforward neural network is the most 
common type of neural network, consisting of layers of artificial 
neurons connected in a directed acyclic graph, where the input 
is passed through the layers one at a time to the input layer. This 
input data is used to perform computations in the hidden layers, 
and the output is produced by the final output layer. The 
computation performed by a neuron is a linear combination of 
its inputs, followed by a non-linear activation function. The 
linear combination of inputs and weights is represented 
mathematically as given in equation 5: 

𝑍 = 𝑊𝑥 + 𝑏 () 

where x is the input, W is the weights, and b is the bias. The 
activation function, Z produces the output of the neuron based 
on the input. Neural networks use different activation functions, 
including sigmoid, ReLU, and tanh. The parameters of a neural 
network are the weights and biases of the connections between 
the neurons, which determine the computation performed by 
each neuron. The learning algorithms optimize these parameters 
to minimize the difference between the network's predicted 
outputs and the desired outputs, which is the process known as 
training. The weights are changed based on the difference 
between the target value and the predicted value [43], [44], [45]. 
In addition to the optimization algorithm, other factors can affect 
the performance of a neural network, such as the architecture of 
the network and the amount and quality of the training data [46]. 
Architecture refers to the number of layers, the number of 
neurons in each layer, and the connections between the layers, 
as displayed in Error! Reference source not found.. A deeper 
and wider architecture with more neurons and layers can 
increase the capacity of the network, but it also increases the risk 
of overfitting, where the network memorizes the training data 
instead of generalizing it to new data. On the other hand, a 
shallower and narrower architecture with fewer neurons and 
layers can decrease the capacity of the network, but it also 
reduces the risk of overfitting. 

 

Fig. 2. Neural network architecture. 

A key concept in the architecture is the regularization of the 
model. This is done to avoid overfitting and improve the 
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generalization capability of the network. There are various 
forms of regularization, like dropout and early stopping. Finally, 
the amount [47], [48], [49] and quality of the training data play 
a critical role in the performance of a neural network. A larger 
and more diverse training set can increase the ability of the 
network to generalize to new data, but it also increases the 
computational cost of training. The quality of the data is also 
important, as noisy or biased data can impact the performance 
of the network [50]. Preprocessing the data and removing noise 
and outliers can improve the quality of the data and lead to better 
performance [51]. Training a neural network is a complex 
process that involves multiple parameters and techniques, such 
as the optimization algorithm, the architecture, and the amount 
and quality of the training data. The best approach is to 
experiment with different combinations of these factors to find 
the optimal settings for a particular problem and dataset. 

Each type of neural network is suitable for a specific use 
case, and the choice of which one to use depends on the 
characteristics of the problem and the data. In addition to the 
various types of neural networks, several techniques can be used 
to improve the performance of neural networks, such as data 
preprocessing, hyperparameter tuning, and ensemble methods. 
Data preprocessing is the process of preparing the data for use 
in a neural network. This includes tasks such as normalizing or 
scaling the data, removing outliers or noise, and transforming 
the data into a suitable format. Finally, it's important to note that 
neural networks can be computationally intensive, especially for 
large and complex problems, so it's important to consider the 
computational resources and constraints of the problem. This 
might include using specialized hardware, such as graphical 
processing units (GPUs), or using cloud-based services to train 
the networks. 

HYBRID ANN 

A hybrid ANN is a type of neural network that combines the 
strengths of multiple models or algorithms to improve its 
performance. This can be achieved by integrating other models 
or algorithms with an ANN, to leverage their strengths and 
overcome the limitations of a traditional ANN. Hybrid ANNs 
can be developed in different ways, depending on the specific 
problem and the models or algorithms that are being combined. 
Some examples of developing a hybrid ANN include combining 
ANNs with other machine learning models, such as SVMs, 
decision trees, or k-nearest neighbors (k-NN) [52]. A hybrid 
ANN could be developed by combining an ANN with SVM, 
where ANN is used to extract features from the input data, and 
the SVM is used to classify the data. ANNs can be combined 
with evolutionary algorithms, such as genetic algorithms (GAs) 
[53] or PSO [54]. A hybrid ANN could be developed by training 
an ANN using a GA, where the GA is used to optimize the 
weights of ANN. ANNs can be combined with rule-based 
systems, such as fuzzy logic or expert systems [55], [56], [57], 
[58], [59], [60], [61], [62]. A hybrid ANN could be developed 
by integrating a fuzzy logic system with an ANN, where the 
fuzzy logic system is used to handle the imprecision and 
uncertainty of the input data, and ANN is used to perform the 
computation. 

The main advantage of a hybrid ANN is that it can achieve 
better performance than a traditional ANN, due to the 

combination of multiple models or algorithms. For example, a 
hybrid ANN that combines an ANN with a metaheuristic 
algorithm can achieve better performance than an ANN trained 
using a traditional optimization algorithm because the 
metaheuristic algorithm can explore the search space more 
efficiently, but this is not always the case. Similarly, a hybrid 
ANN that combines with rule-based systems can handle 
imprecision and uncertainty of data more efficiently. Another 
advantage is that hybrid ANNs are more robust and less prone 
to overfitting than traditional ANNs, as combining multiple 
models can help reduce the risk of overfitting by averaging the 
errors of individual models. 

Particle Swarm Optimization (PSO) 

PSO is a population-based metaheuristic algorithm that is 
inspired by the social behavior of bird flocks or fish schools [63]. 
It is used to find the global optimum of a given objective 
function. The optimization ability of a flock of birds was studied 
by Kennedy and Eberhart, who developed PSO in 1995. PSO 
has several variants, including constriction PSO (CPSO), inertia 
weight PSO (IWPSO), fully informed PSO (FIPSO) [64], and 
adaptive PSO (APSO). In a hybrid ANN, PSO is used to 
optimize the weights of ANN. It is used to find the best set of 
weights that minimize the error between the predicted output 
and the actual output. This process is done by iteratively 
adjusting the weights based on the PSO algorithm's results. The 
PSO algorithm is used to find the best set of weights for ANN, 
and ANN is used to predict the output based on the input data 
and the optimized weights. The PSO algorithm has several 
parameters that can be adjusted to control the behavior of the 
optimization process, including population size, the maximum 
and minimum values of the search space, inertia weight, 
cognitive weight, and social weight, as shown in Fig.  3. 

 

Fig. 3. Velocity and position adjustment in PSO. 

The population size determines the size of the swarm or the 
number of particles that are used for optimization. The chances 
of finding a global optimum increase with the increase in the 
swarm size, but it becomes computationally expensive as the 
number of particles increases. The optimum value of the swarm 
size is dependent on the problem, and therefore, it may vary. The 
maximum and minimum values of the search space determine 
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the range of values that the particles can take relevant to the 
research problem being solved. The working of the PSO is 
presented in a flowchart in Fig. 4. 

 

Fig. 4. PSO flowchart. 

The exploration and exploitation behavior of the algorithm 
is controlled by the inertia weight, cognitive weight, and social 
weight. The inertia weight determines the influence of the 
previous velocity of the particle on its current movement. A 
higher value means that the particle will be more biased towards 
the previous movement, and a lower value of inertia weights will 
cause the particle to be more responsive towards the other 
particles in the swarm and global best position. The cognitive 
weight controls the tendency of the particle to move towards its 
own personal best position. A higher value means that the 
previous personal best position of the particle will have a greater 
impact on the current movement. The social weight controls the 
tendency of the particle to move towards the global best position 
of the swarm. Increasing inertia weight will increase the 
tendency of the particle to move in the same direction as it did 
in the previous iteration. Increasing cognitive weight will 

increase the tendency of the particle to move towards its own 
personal best position, which can make the algorithm more 
aggressive in exploring the search space. Increasing social 
weight will increase the tendency of the particle to move towards 
the global best position of the swarm. Increasing the value of all 
these three weights can make the algorithm converge faster but 
also increase the chances of getting stuck in a local optimum. 

Grey Wolf Optimizer (GWO) 

 GWO is a metaheuristic algorithm that was inspired by the 
hunting behavior of grey wolves [65]. It is used to solve 
optimization problems and find the global optimum of a given 
objective function. The GWO algorithm has several parameters 
that can be adjusted to control the behavior of the optimization 
process. These include the population size, the maximum and 
minimum values of the search space, and the alpha, beta, and 
delta coefficients. Each parametric value affects the working of 
the optimization algorithm. The population size determines the 
number of solutions that are considered at each iteration of the 
optimization process. The maximum and minimum values of the 
search space determine the range of values that the solutions can 
take. These values should be set based on the specific problem 
being solved.  

 The alpha, beta, and delta coefficients are used to control the 
exploration and exploitation behavior of the algorithm. The 
alpha coefficient controls the step size of the search, the beta 
controls the direction of the search, and the delta controls the 
convergence rate of the algorithm. Increasing alpha will increase 
the step size of the search, which can speed up the optimization 
process but also increase the chances of missing the global 
optimum. Increasing beta will increase the direction of the 
search, which can make the algorithm more aggressive in 
exploring the search space, but also increases the chances of the 
algorithm getting stuck in a local optimum. Increasing the delta 
will increase the convergence rate of the algorithm, which can 
make the algorithm converge faster but also increases the 
chances of missing the global optimum. 

Bat Algorithm (BA) 

 BA is a population-based optimization algorithm that is 
inspired by the echolocation behavior of bats [66]. Like the other 
two algorithms discussed above, it is also used to find the global 
optimum of a given objective function. The optimization process 
is controlled by the parameters involved, including the 
population size, the maximum and minimum values of the 
search space, and the frequency range, loudness, and pulse 
emission rate (alpha). The working of BA from the initialization 
of the swarm to the end criterion is indicated in a flowchart in 
Fig. 5. The population size determines the number of bats that 
are considered at each iteration of the optimization process. The 
maximum and minimum values of the search space determine 
the range of values that the solutions can take. These values 
should be set based on the specific problem being solved. The 
frequency range is used to control the exploration and 
exploitation behavior of the algorithm. Increasing the frequency 
range will increase the chances of finding the global optimum 
but also increase the computational time required. The loudness 
controls the exploration and exploitation behavior of the 
algorithm. Increasing loudness will increase the exploration and 
exploitation behavior of the algorithm, which can make the 
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algorithm more aggressive in exploring the search space but also 
increase the chances of the algorithm getting stuck in a local 
optimum. The pulse emission rate (alpha) controls the 
convergence rate of the algorithm. Increasing the pulse emission 
rate (alpha) will increase the convergence rate of the algorithm, 
which can make the algorithm converge faster but also increases 
the chances of missing the global optimum. 

 

Fig. 5. BA flowchart. 

DATABASE FOR CFRP CONFINED CYLINDERS 

 To predict the axial compressive strength of concrete 

members confined with FRP, a dataset of 708 samples was 

developed from the previous research publications. The 

common variables of the data are chosen for the training and 

testing of ANN and hybrid ANN. Seven common features in 

the dataset are used as the input variables, including the 

geometrical properties such as the diameter of the cylinder (D), 

the height of the cylinder (H), total thickness (nt), and elastic 

modulus of the FRP (𝐸𝑠 ), and compressive strength of the 

unconfined concrete (𝑓𝑐𝑜
′ ), unconfined concrete strain (εco ), 

confined concrete strain ( εcc ). The confined compressive 

strength of the CFRP concrete is used as the target variable for 

the prediction models. The distribution of these parameters is 

shown in Error! Reference source not found.. This data is 

further divided into training and testing data in 75% and 25% 

proportions. 

 

Fig. 6. Correlation Heatmap for the dataset. 

 A statistical description of the data is provided in Error! 
Reference source not found., and the correlation of dataset 
parameters is reported in Fig. Error! Reference source not 
found., which shows the influence of the variables on each 
other’s value and, most importantly, on the compressive strength 
of the CFRP confined cylinders. The heatmap reveals color 
variation with the change in the influence of parameters on each 
other values. The darker region denotes a lesser correlation, and 
the light region signifies a high correlation between the 
parameters. The main parameter of concern is the axial 
compressive strength, and the last row of the heatmap elaborates 
on the influence of each parameter on its value. The unconfined 
compressive strength and the thickness of CFRP sheets have the 
most impact on the confined compressive strength of the 
concrete cylinders.  

TABLE I.  STATISTICAL DESCRIPTION OF THE DATASET 

Parameter 
D 

(mm) 

h 

(mm) 

nt 

(mm) 

Es 

(GPa) 

𝒇𝒄𝒐
′  

(MPa) 

εco 

(%) 

εcc 

(%) 

𝒇𝒄𝒄
′  

(MPa) 

Min 51 102 0.09 10 12.41 0.1676 0.083 18.5 

Max 406 812 5.9 663 188.2 1.53 4.62 302.2 

Diff 355 710 5.81 653 175.79 1.3624 4.537 283.7 

Mean 153.34 306.45 0.89 174.68 42.48 0.27 1.54 76.25 

Median 152 304 0.47 219 37.7 0.24 1.35 67.91 

St. Dev. 43.16 85.67 1.05 118.8 22.39 0.14 0.85 35.01 

Cov 0.29 0.28 1.18 0.69 0.53 0.52 0.56 0.46 
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The database contains eight variables of different ranges, 
which reduces the effectiveness of the ANN models. Some 
variables, like the depth of cylinders, have very large values in 
multiples of 100, while the strain values are less than 1. This 
large variation in data creates troubles for the prediction models 
during the training and testing of the data. Therefore, the data is 
converted between suitable upper and lower limits that convert 
all the variables within a single range and increase the efficiency 
of the ANN model. The database is normalized between 0.1 and 
0.9, rather than 0 and 1, for all the parameters of the CFRP-
confined concrete cylinders using Equation 6. 

𝑋 = (
0.8

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
) 𝑥 + (0.9 − (

0.8

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
) 𝑥𝑚𝑎𝑥) () 

where xmax and xmin are the maximum and minimum values of 
the parameters of the dataset. The methodology of this research 
is summarized in a flowchart shown in Fig. 7. This chart 
provides a visual representation of the research study, starting 
with data collection, the use of ML, and empirical models to 
evaluate the confined compressive strength of CFRP cylinders, 
followed by the detailed comparison of the models. 

 

Fig. 7. BA flowchart. 

 

Fig. 8. Distribution of CFRP cylinders data. 

MODEL DEVELOPMENT 

 This research uses four different prediction models, 
including one model of feedforward neural network (FNN) and 
three hybrid neural networks based on the metaheuristic 
algorithms of GWO, PSO, and BA combined with the FNN. In 
the FNN model, data flows in only a forward direction through 
the network. It contains input, hidden, and output layers that 
process the data through them via a combination of the weights 
and biases that are continuously updated in each iteration using 
an optimization algorithm. The neural networks can develop a 
pattern in the data to perform predictions, but they can face 
several problems during the training and deployment stages, 
including overfitting, underfitting, and getting trapped in local 
minima. Metaheuristics are used to optimize the architecture and 
topology of ANN, which can lead to a more complex and 
expressive model that can better fit the data to overcome the 
problem of underfitting [67]. These algorithms can be used to 
optimize the weights and biases of ANN [68] in a way that 
balances the trade-off between fitting the training data and 
generalizing it to new, unseen data to overcome the problem of 
overfitting. They can avoid getting trapped in local minima by 
exploring and exploiting the entire search space to achieve the 
global minimum. 

 However, the hybrid ANN models don't need to always 
perform better than the ANN model. The metaheuristic 
algorithms of PSO, GWO, and BA have their own set of 
parameters that have unique optimum values depending on the 
database and research problem. These are run on the database 
multiple times by varying their parametric values to optimize 
their prediction process and reduce the computational cost. The 
optimum values of the parameters for each of the metaheuristic 
models are provided in Error! Reference source not found.. 

TABLE II.  HYBRID MODEL PARAMETERS 

Sr. 

No 
Model Population Iterations 

Parametric 

Values 
Neurons 

Objective 

Function 

1. PSO 70 900 
D, h, nt, Ef, f'co, 

f'cc, ɛcc,ɛco 
50 MSE 

2. GWO 75 900 
D, h, nt, Ef, f'co, 

f'cc,ɛcc,ɛco 
50 MSE 

3. BA 80 900 
D, h, nt, Ef, f'co, 

f'cc, ɛcc, ɛco 
50 MSE 

 

All three algorithms use the objective function of MSE and 
the model, resulting in the maximum value of R, and the lowest 
MSE value is the best model. The optimum value of the 
parameters of the algorithms is also decided based on these 
results and the computational time. The input parameters used 
for the FNN and the hybrid neural networks of PSO, GWO, and 
BA are given in Error! Reference source not found. with their 
statistical description. These three algorithms are compared with 
each other based on the values of the error metrics of MSE, MAE, 
and the correlation factor (R2) that are expressed in the following 
equations. 

𝑴𝑺𝑬 =
∑ (𝒀−𝒀̅ 𝒏

𝒊=𝟏 )𝟐

𝒏
 () 
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𝑴𝑨𝑬 =
∑ |𝒀−𝒀̅|𝒏

𝒊=𝟏

𝒏
 () 

𝑹𝟐 = (
𝒏(∑ 𝒙𝒚)−(∑ 𝒙)(∑ 𝒚)

√[𝒏 ∑ 𝒙𝟐−(∑ 𝒙)𝟐][𝒏 ∑ 𝒚𝟐−(∑ 𝒚)𝟐
)𝟐 () 

where Y and 𝑌̅ are the experimental and predicted values, 
respectively. The accuracy of the prediction model is determined 
by the values of the error metrics of MSE and MAE and R2. The 
prediction model with the lowest values of MSE, MAE, and the 
highest value of R2 is the best. There is still another factor which 
is the biases of the prediction model towards either 
underestimation or overestimation of the predicted values. This 
is determined by the plots of predicted values. 

Comparison of Empirical and Hybrid ANN Models 

This research work is based on two empirical models, three 
hybrid ANN models, and one ANN model to predict the axial 
compressive strength of CFRP concrete cylinders using a 
database of 708 samples. The models proposed by Lam and 
Teng [41] and Miyauchi et al. [69] are used in the present study 
after careful analysis of the other empirical models. The models 
proposed by Lam and Teng [41] and Miyauchi et al. [69] were 
tested against the experimental values and their accuracy was 
higher than other empirical models. The models of Lam and 
Teng and Miyacuhi et al. [69] are given in Eq Error! Reference 
source not found. and Error! Reference source not found., 
respectively. The accuracy and error metrics of these models are 
represented in Error! Reference source not found. and Error! 
Reference source not found., having R2 = 97.5, MSE = 1.86% 
for Lam and Teng [42] model and R2 = 97.4%, MSE = 2.01% 
for the Miyauchi et al. [69] model. The author also proposed a 
non-linear empirical model in the previous research [34] for the 
calculation of the strength of confined concrete as given by Eq 
Error! Reference source not found.. 

𝑓𝑐𝑐
′

𝑓𝑐𝑜
′ = 1 + 3.3

𝑓𝑙

𝑓𝑐𝑜
′  () 

𝑓𝑐𝑐
′

𝑓𝑐𝑜
′ = 1 + 3.485

𝑓𝑙

𝑓𝑐𝑜
′  () 

𝑓𝑐𝑐

𝑓𝑐𝑜
= 1 + 𝑘(

𝑓𝑙

𝑓𝑐𝑜
)𝑛 () 

The working of the hybrid ANN was optimized by tuning 
the parameters of each algorithm. This optimization was done 
by using MSE as an objective function. The preliminary 
evaluation of the models was done based on the error metrics of 
MSE, MAE, and R2. The optimization is done by reducing the 
difference between the actual experimental values and the 
predicted values. The model with the least value of MSE and the 
highest value of MAE is the best model of all. Three different 
metaheuristic algorithms were used, including PSO, GWO, and 
BA. 

 

 

Fig. 9. Accuracy of prediction models and empirical models. 

 

Fig. 10. Error metrics of prediction models and empirical models. 

The MSE and R2 values have demonstrated that PSO and 
GWO-based ANN models provided better results for the 
prediction of axial compressive strength of the CFRP confined 
cylinder. The hybrid models were trained on different objective 
functions initially to determine the best optimization function 
for the current research. It has been observed that the working 
of the hybrid models changed significantly by varying the 
objective functions, keeping all other parameters of the model 
constant. The hybrid models of PSO and GWO provided the 
most accurate predictions based on the value of the error metrics 
of MSE, MAE, and R2 value. The PSO model predicted the axial 
compressive strength of CFRP-confined cylinders with an 
accuracy of 99.13%, followed by the GWO model with an 
accuracy of 98.17% and ANN with an accuracy of 96.05%. The 
error metrics for the PSO model were the lowest, with MSE of 
0.1414% and MAE of 1.28%, while the GWO model has MSE 
of 0.33% and MAE of 1.49%. The ANN model also gave good 
results comparable to that of the GWO model. The predicted 
results from ANN, PSO, and GWO show that the predicted 
values of axial compressive strength are distributed uniformly 
around the best-fit line. While the empirical methods from Lam 
and Teng [41] and Miyauchi et al. [69] gave an overall good 
accuracy ,they have a bias towards overestimation of the results. 
The values of axial compressive strength are often found to be 
more than the original strength values. Other than the prediction 
models, the two empirical models of Lam and Teng [41] and 
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Miyauchi et al. [69] predicted the axial compressive strength 
with an accuracy of 97.53% and 97.44%, respectively. 

The predicted results of the testing data were analyzed 
against the target values for the axial compressive strength for 
each of the four models individually. The testing data for the 
models did not follow any particular pattern and were chosen 
randomly from the overall database. The predictions from the 
PSO, GWO, and ANN followed the rapidly changing data points 
of the testing data perfectly, as displayed in Figures 11-14. 

 

Fig. 11. ANN predictions of axial compressive strength. 

 

Fig. 12. PSO predictions of axial compressive strength. 

 

Fig. 13. GWO predictions of axial compressive strength. 

 

Fig. 14. BA predictions of axial compressive strength. 

The accurate predictions for this randomly and rapidly 
changing data uncover that the PSO, GWO, and ANN can be 
used as a substitute for empirical methods and experimental 
testing, making the overall process quick and economical. These 
predictions also reveal that not all metaheuristics-based hybrid 
ANN models perform accurate predictions. BA model 
predictions are far from the actual values of the axial 
compressive strength of CFRP-confined cylinders, as depicted 
in Error! Reference source not found.. The normal 
distribution of the ratio of confined to unconfined strength for 
the experimental values and model predictions for the database 
are presented in Error! Reference source not found., and the 
distribution of confined to unconfined strength ratio of the 
database is indicated in Error! Reference source not found.. 

 

Fig. 15. Distribution of confined to unconfined strength ratio of CFRP 

cylinders. 

 

Fig. 16. Normal distribution of (𝑓𝑐𝑐
′ /𝑓𝑐𝑜

′
𝑒𝑥𝑝

)/ (𝑓𝑐𝑐
′ /𝑓𝑐𝑜

′
𝑝𝑟𝑒𝑑

) for CFRP-wrapped 

cylinders. 
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Experimental Validation of Data 

Research in concrete technology is focused on improving 

the mechanical properties of concrete and making the process 

economical. For this purpose, several supplementary 

cementitious materials, substitutes for aggregates, and even 

seawater as a replacement for freshwater have been used to 

determine the impact of changes in constituents on the concrete. 

The variation in materials significantly changes the properties 

of concrete, and this variation shows specific patterns with 

different replacement proportions. But this can be 

accomplished only during the casting of concrete. It is not 

always a workable solution to increase the size of the structural 

members if any deficiency is found after construction or if their 

capacity reduces during their design life due to natural hazards. 

Some problems, including reinforcement corrosion, 

overloading, cracking, and aging of concrete, may require more 

reinforcement that cannot be added once a structural member is 

built. These requirements can be fulfilled by wrapping FRP 

sheets around the structural members, which do not increase the 

dimensions of the member but increase their load-carrying 

capacity. 
The present research uses the author’s previous experimental 

work on the 18 concrete cylinders. These cylinders used 
unidirectional wrapped CFRP sheets having a 4100 MPa 
nominal tensile strength and 231 GPa of nominal tensile elastic 
modulus that used 2-part epoxy impregnation resin of Sikadur-
330 for the bonding of CFRP sheet with cylinders. It has a tensile 
strength of 30 MPa, elongation of 0.9%, and tensile elastic 
modulus of 4500 MPa. For the experimental investigation, a 
total of 18 concrete cylinders of standard size of 150 mm 
diameter and 300 mm height is cast initially. Nine cylinders have 
a compressive strength of 12.5 MPa, and the other nines have 
16.5 MPa compressive strength. In each group, three more 
distributions are made based on the number of CFRP sheets 
layer wrapped around them. In both groups of 9 cylinders, three 
cylinders are wrapped with two layers of CFRP, three cylinders 
with one layer of CFRP, and three cylinders are not wrapped 
with any CFRP layer. This division is done to determine the 
variation of the ductility and strength of concrete with varying 
numbers of CFRP layers around the concrete cylinders. The 
uniaxial test was performed to determine the compressive 
strength of all samples, and it was observed that CFRP sheets 
increased the ductility and strength of concrete cylinders. 

Finite Element Analysis 

The finite element results are also taken from the author’s 

previous work [34], where a concrete cylinder with one CFRP 

sheet wrapped around it was used as a numerical model for 

finite element modeling in ABAQUS. The behavior of the 

concrete and CFRP is different and requires behavior 

simulation models unique to the type of material. There are 

various models for simulating the behavior of concrete in 

ABAQUS, including the concrete tension stiffening (CTS), 

continuum damage mechanics (CDM) model, extended finite 

element method (XFEM) model, and concrete damaged 

plasticity (CDP) model. The author’s previous work used CDP, 

which accounts for the damage and plastic deformation of the 

concrete. The CDP model includes parameters such as tensile 

strength, compressive strength, and fracture energy. The CDP 

model was used for the concrete, and the Hashin Damage 

Model was used for the FRP sheets. 
The CDP model requires input for three important concrete 

parameters to simulate the tensile, compressive, and plastic 
behavior. The tensile behavior of concrete was defined using the 
modified tension stiffening model, and for compressive 
behavior, Eurocode 2 was used. The average compressive strain 
(𝜀𝑐1 ) and ultimate compressive strain (𝜀𝑐𝑢1 ) were calculated 
using the following equations: 

𝜺𝒄𝟏 = 𝟎. 𝟎𝟎𝟏𝟒[𝟐 − 𝒆−𝟎.𝟎𝟐𝟒𝒇𝒄𝒎 − 𝒆−𝟎.𝟏𝟒𝟎𝒇𝒄𝒎] () 

𝜺𝒄𝟏 = 𝟎. 𝟎𝟎𝟏𝟒[𝟐 − 𝒆−𝟎.𝟎𝟐𝟒𝒇𝒄𝒎 − 𝒆−𝟎.𝟏𝟒𝟎𝒇𝒄𝒎] () 

For calibration purposes, one concrete cylinder was chosen 

to identify the best approximation of each parameter on the 

stress-strain behavior of concrete. For this purpose, a concrete 

cylinder of 12.5 MPa compressive strength was calibrated by 

achieving close agreement with the experimental results, and 

then this model was calibrated for CFRP-wrapped samples. The 

geometrical parameters of the dilation angle, viscosity 

parameter, and mesh size of concrete were used for calibration 

of the finite element model (FEM) of concrete. 

The dilation angle is calibrated for a close agreement 

between the FEA results and the stress-strain results of the 

experiment. Mesh size is an important parameter that 

significantly affects the analysis results. If the mesh size is too 

coarse, it results in strain localization because the energy is 

localized in a limited number of elements for that particular 

region of the model. This results in an overestimation of 

stresses and strains in the localized region. However,, a mesh 

size that is too fine, increases the computational cost of the 

simulation. It was observed that the stress-strain behavior of 

cylinders was not affected much by the variation in shape 

factor, stress ratio, and eccentricity, so the default values were 

used for these parameters. The effect of the element types of 

concrete was checked by studying all of the element libraries 

for 3D stress elements of concrete. 
The Hashin Damage model was used for the simulation of 

the CFRP sheets wrapped around the concrete cylinders. The 
behavior of the CFRP in the ABAQUS can be described in two 
phases according to the actual behavior in the elastic and plastic 
phases. For the elastic stage, Poisson’s ratio and elastic modulus 
are defined, and for the plastic stage, the Hashin failure model is 
used. Hashin’s theory for the damage prediction of the CFRPs is 
simulated on four damage mechanisms, including compression 
and tension of both fiber and the matrix. The compressive stress 
and strains of the unconfined concrete cylinders and confined 
concrete cylinders are illustrated in Error! Reference source 
not found.. The experimental results depicted that an increase 
in the CFRP layers increases the ductility and strength of the 
concrete cylinders. The authors' previous work indicated that the 
strength of the confined concrete cylinders increased from 
69.42% to 87.2% for the 12.5 MPa strength concrete, and the 
strength of confined concrete increased from 60.82% to 103.2% 
for 16.5 MPa concrete with one and two layers of CFRP wraps. 
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Fig. 17. Stress-strain plots for unconfined and confined samples. 

PARAMETRIC STUDY 

The influence of each of the individual experimental 
parameters on the uniaxial compressive strength was determined 
by the parametric study. In a parametric study, various 
unconfined concrete strengths (𝑓𝑐𝑜

′ ) were considered, and their 
effect on the confined strength of concrete (𝑓𝑐𝑐

′ ) was analyzed 
using a proposed model. The study found that an increase in 𝑓𝑐𝑜

′  
from 5 MPa to 50 MPa, and an increase in the diameter of the 
cylinder from 100 mm to 550 mm at constant fiber elastic 
modulus (Ef), led to a 193.30% increase in confined strength. 
When the elastic modulus of FRP increased from 110 GPa to 
245 GPa with the same increment of 𝑓𝑐𝑜

′ , the confined strength 
increased by 484.91%. Additionally, increasing the thickness of 
the FRP wrap from 0.15 mm to 1.05 mm while also increasing 
𝑓𝑐𝑜

′
 from 5 MPa to 50 MPa resulted in a significant 761.75% 

increment in 𝑓𝑐𝑐
′ .These findings suggest that the increase in 𝑓𝑐𝑜

′  
has a more dominant effect when the thickness of the FRP wrap 
is increased. With an increase in the elastic modulus of FRP 
from 110 GPa to 245 GPa and an increase of FRP thickness from 
0.15mm to 1.05 mm, 𝑓𝑐𝑐

′  increased by 55.75%. It has been 
observed that there was a negligible effect of an increase in the 
thickness of FRP layers in large-diameter concrete samples. The 
thickness of FRP layers significantly influenced the samples 
with a smaller diameter. With the increase in diameter of the 
concrete cylinders, the effect of elastic modulus on the confined 
compressive strength is reduced. 

Concrete Compressive Strength and Cylinder Diameter 

The most important geometric parameter for the comparison 
is the diameter of the cylinder and the important mechanical 
property is the compressive strength of the concrete as illustrated 
in Fig. Error! Reference source not found. and Fig. Error! 
Reference source not found.. These two parameters have a 
higher influence over the confined compressive strength of the 
CFRP confined cylinders. The comparative study of the 
diameter and unconfined compressive strength shows that PSO 
and GWO have performed better for prediction models, and the 
empirical models of the Lam, Teng, and Miyauchi have also 
provided good results. The Lam and Teng model and Miyauchi 
model have provided results closer to the unity line than the 
prediction models. BA has resulted in greater deviations from 
the unity line. 

 

Fig. 18. Ratio-diameter plots. 

 

Fig. 19. Ratio-compressive strength plots. 

 

Elastic Modulus and FRP Thickness 

The elastic modulus of the FRP and its thickness are the most 
important material property related to the FRP, as illustrated in 
Fig.s Error! Reference source not found. and Error! 
Reference source not found.. The prediction results of the PSO 
are closer to the unity line for the Elastic modulus and the 
thickness of the FRP. The scatter of the points for the BA 
displayed extensive deviation from the line of unity. While the 
empirical models of the Lam and Teng model and Miyauchi 
model indicated a lesser deviation of the results of the ratio of 
strength from the unity line. The prediction models of the PSO, 
GWO, and ANN show little bias towards underestimation of the 
ratio of the 𝑓𝑐𝑐

′ /𝑓𝑐𝑜
′ , as depicted in Fig. Error! Reference source 

not found. and Error! Reference source not found.. The 
results of their ratios are scattered more above the unity line, 
while the results of the Lam and Teng model and Miyauchi 
model are more uniformly distributed around the unity line that 
demonstrating the non-biases of the empirical model towards 
either overestimation or underestimation for the ratio of 𝑓𝑐𝑐

′ /𝑓𝑐𝑜
′ . 
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Fig. 20. Ratio-elastic modulus plots. 

 

Fig. 21. Ratio-FRP thickness plots. 

CONCLUSIONS 

This study evaluated the improvement in the strength of 

concrete cylinders confined with CFRP and the effectiveness of 

the optimization ability of metaheuristics models of PSO, 

GWO, and BA combined with ANN to predict the axial 

compressive strength of CFRP-confined concrete cylinders. 

The main conclusions from the research are given below. 

The hybrid ANN model of PSO performed the most 

accurate predictions for the strength of CFRP confined 

cylinders with the highest R2 of 99.13% and the least MSE and 

MAE of 0.14% and 1.28%. The GWO model provided the 

second most accurate results, with an accuracy of 98.17%. The 

improved accuracy of prediction models suggests that the axial 

compressive strength of CFRP-confined concrete can be 

determined accurately. These prediction models can be used as 

a non-destructive approach to determining the strength of 

CFRP-confined concrete. 

The empirical models of the Lam and Teng model and 

Miyauchi model provided good results, but they have a bias 

towards overestimation of the values. Therefore, the prediction 

plots showed the maximum deviation of the best-fit line of the 

calculated results from the ideal best-fit line. BA performed the 

least accurate predictions, but its best-fit line is still closer to 

the ideal line than that of the empirical models. 

The experiments performed by the authors in the previous 

research demonstrated that confining concrete cylinders with 

CFRP increased the axial compressive strength and ductility of 

the concrete cylinders. The strength of the confined concrete 

enhanced with the increase in the unconfined strength, the 

elastic modulus of CFRP, and the thickness of CFRP layers.  

The performance of three hybrid models of PSO, GWO, and 

BA clarified that not all metaheuristics-based hybrid ANN 

models could outperform ANN. PSO performance based on the 

predictions and error metrics revealed that it performed better 

than ANN but under the same training and testing parameters, 

BA performed less accurately as compared to ANN. 

Furthermore, the performance of the metaheuristics-based 

ANN models varied with the objective functions. The 

parameters of the hybrid models were optimized manually 

through careful observation of training and testing results of the 

models by varying the parameters of the models. The 

performance could be improved by using the automatic process 

of parameter optimization [70]. 
Several limitations have been identified in this research that 

should be considered in future research studies. This study 
primarily focuses on CFRP-reinforced concrete cylinders, and 
the findings may not be directly transferable to cylinders 
reinforced with other types of FRP materials, such as glass fiber-
reinforced polymers (GFRP) or basalt fiber-reinforced polymers 
(BFRP). The mechanical properties and behavior of different 
FRP materials can vary significantly, and future research should 
explore the application of the proposed models to a broader 
range of materials. CFRP has the highest compressive strength, 
while AFRP has the lowest compressive strength [71]. The 
research findings of multiple researchers have revealed that 
CFRP is lightweight and possesses high tensile strength as 
compared to the other FRPs [72], [73], [74], [75]. Wu et al. [76] 
performed comprehensive research on the tensile fatigue 
behavior of various FRP sheets. They reported that BFRP has 
36% higher strength and 4.6% higher tensile modulus. These 
findings from different studies suggest that all FRP materials 
vary in their performance, therefore, the findings of this study 
are only applicable to CFRP-reinforced concrete cylinders. The 
optimization process utilizing metaheuristic models, such as 
Particle Swarm Optimization (PSO), Grey Wolf Optimizer 
(GWO), and Bat Algorithm (BA), demands substantial 
computational resources and time. The need for powerful 
computing systems and extended processing times might pose 
practical challenges for implementation in real-time 
construction scenarios and may influence the scalability of the 
proposed models. Additionally, the data used in the study 
underwent analysis to identify and eliminate outliers and noisy 
data. However, it's important to note that real-time data in 
construction settings may exhibit dynamic variations and 
unforeseen factors that were not present in the analyzed dataset. 
Therefore, the prediction models might not perform at their 
optimal performance with the real-time data from the 
construction process. 
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