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Abstract

This paper presents a study that extends the application of carbon fiber reinforced polymer (CFRP) composite confinement technology
to strengthen circular concrete columns damaged by fire. This study utilized data from 125 column specimens sourced from the literature.
It examined ten parameters: column diameter, height, initial compressive strength of concrete, initial tensile strength of steel, longitudinal
reinforcement ratio, fire temperature, exposure time, number of CFRP layers, CFRP thickness, and CFRP tensile modulus, which were
used as inputs for the model. The objective was to predict the ultimate axial strength of fire-damaged circular columns repaired with
CFRP composites. This study employs both multiple regression analysis and a deep neural network (DNN) to predict the structural
behavior of reinforced concrete (RC) columns and accurately forecast their repaired axial capacity. The proposed deep neural network
(DNN) model demonstrated a robust agreement with experimental investigations, boasting an overall correlation factor (R) of 0.99852.
Deep neural networks outperformed multiple regression analysis in predicting axial strength, with predictions closely matching
experimental results from previous studies. The work also presents a parametric study to examine the effect of different input parameters
on the axial strength of RC columns. Parametric analysis indicates that the repaired axial strength increases with higher concrete initial
compressive strength, greater CFRP thickness and tensile modulus, and more CFRP layers, whereas it decreases with higher fire
temperatures, longer exposure durations, and larger column diameters.
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temperatures or have had their mechanical characteristics
1. INTRODUCTION diminished due to thermal effects [5].

Externally bonded fiber-reinforced polymer (FRP)
circumferential wraps are a preferred method for restoring or
enhancing the capacity and ability to resist distortion of concrete
columns. There is considerable research evidence supporting the
use of FRPs in different applications. Additionally, numerous
computational models exist for designing FRP strengthening
techniques for both circular and rectangular concrete columns
under ambient conditions [1, 2]. There is an increasing body of
research [3, 4] that has examined the behavior of reinforced
concrete columns enhanced with FRP wraps during fire
exposure. These columns have either been exposed to elevated

Fire is a prevalent natural phenomenon with significant
potential for causing extensive damage to buildings if left
uncontrolled. There has been a global increase in incidents of
structures being damaged by fire, with concrete structures being
particularly vulnerable due to the loss of structural integrity
during and after such events [6, 7]. Owners and insurers of
infrastructure aim to minimize financial losses resulting from
building closures and operational disruptions by demanding
reliable, cost-effective, and expedient repair techniques [8]. In
response, various methods have been employed, including the
use of concrete or steel jacketing for column strengthening.
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However, contemporary practices favor fiber-reinforced
polymer (FRP) due to its rapid application and lightweight
nature, which has been demonstrated to strengthen and repair
damaged structures effectively [9,10]. Although considerable
research has been conducted on retrofitting concrete columns
with FRP [11-20], limited attention has been given to fire-
damaged circular concrete columns [4]. The lack of research in
this specific area is primarily due to uncertainties regarding the
performance of FRP in fire conditions following repair [21].
Nevertheless, it has been noted that FRP can perform well in fire
conditions when appropriate fire insulation measures are applied
[22-29]

Concrete structures generally show excellent resistance to
fire [30] and can typically be repaired after a fire incident [31].
This is mainly due to the fact that the concrete shell has
comparatively low heat conductivity. As long as it stays intact,
it protects the concrete core and embedded reinforcement at
relatively reduced temperatures even during extended periods of
severe heating. By reducing the harmful effects of heat on the
material properties of the reinforcing bars and the core concrete,
this method maintains the structural stability and ensures
sufficient fire resistance, provided the member has been
properly constructed [32].

With progress in scientific disciplines, machine learning
(ML) and artificial intelligence (Al) have advanced considerably
and are now broadly utilized across multiple industries. Deep
learning, in particular, has become prominent in addressing a
wide range of engineering problems [33—38]. Previous studies
have applied neural networks (NNs) to predict the compressive
strength of FRP-confined concrete [39—42], showing the
usefulness of NNs in estimating such behavior based on material
and structural factors. In existing literature, NN-based modeling
has been employed to predict several parameters, such as the
load capacity of fiber-reinforced cement-based matrix-encased
columns, fire resistance of hollow steel members filled with
concrete, residual strength of High-Performance Concrete
(HPC) exposed to elevated heat, and load-bearing capacity of
thermally damaged concrete strengthened with Glass Fiber-
Reinforced Polymer (GFRP) [43—45]. However, in the scope of
this research, which investigates the impact of Carbon Fiber-
Reinforced Polymer (CFRP) on fire-deteriorated circular
columns, there is a clear gap in published work addressing the
creation of a DNN model for this purpose. To address this gap,
the present study aims to develop and validate an optimized
DNN that predicts the ultimate axial strength of CFRP-repaired,
fire-damaged circular concrete columns using a curated database
of 125 experimental specimens and ten key input parameters.
The novelty of this work lies in applying a tailored DNN
architecture to a comprehensive fire-damage dataset, comparing
its performance with multiple regression analysis, and coupling
the model with a parametric sensitivity study to produce
actionable guidance for repair design and fire-resilience
assessment

II. METHODOLOGY

To establish a robust Deep Neural Network (DNN) model
and a regression model for predicting the axial capacity of fire-
damaged circular concrete columns repaired with Carbon Fiber
Reinforced Polymer (CFRP), a comprehensive database

comprising 125 specimens sourced from existing literature was
compiled. The collected data were first normalized and then
used for training the DNN models. Seven models in total were
built with each model possessing a different neural structure
based on Multilayer Feedforward Neural Networks (MLFNNs)
for the prediction of axial capacity of fire-damaged concrete
columns repaired with CFRP. The models were well-tested and
the best one was selected with the highest accuracy of
prediction. This optimum DNN model, together with regression
analysis, were subsequently employed to forecast the axial
capacity of the repaired columns, and the results were compared
against experimental findings presented in the literature.
Besides, the model was also utilized to examine the influence of
various parameters such as column height, initial compressive
strength of concrete, heating duration, fire exposure
temperature, and number of layers of CFRP on the axial capacity
of CFRP-strengthened fire-damaged circular columns. A
schematic outline of the approach adopted in this research is
presented in Fig. 1 to illustrate the process step by step.
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Fig. 1. The procedure of the present investigation.

2.1 Linear regression model

Multivariable linear regression analysis (MRA) was applied
to evaluate the influence of several independent variables on the
dependent variable. In this approach, the dependent variable is
modeled as a linear combination of two or more predictors, as
represented by the general MRA model as

Y=a+b; X;+by Xp+............bx XiEe

In this model, Y denotes the dependent variable; a is the
intercept; bi, bz, ..., by represent the regression coefficients
corresponding to the independent variables X,, Xb, ..., Xi; and e
denotes the error term. The regression models were developed
using the enter method in the Statistical Package for Social
Sciences (SPSS), where all variables in a block are introduced
simultaneously in a single step.
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Multivariable linear regression analysis (MRA) is associated
with several statistical parameters that provide insights into
model performance and reliability. Among the most important
are: the coefficient of determination (R?), the correlation
coefficient (R), the adjusted coefficient of determination
(adjusted R?), the standard error of the regression coefficient, the
confidence level, the standard error of estimate, model error, the
significance level (p-value), the t-distribution, the F-distribution,
and the residuals [46, 47].

2.2: Neural Network Modelling:

2.2.1: Forward and Back propagation:

In the present study, multilayer feedforward neural networks
(MLFNNs) were employed to develop models for predicting the
axial capacities of CFRP-repaired, fire-damaged rectangular and
square columns. Previous experiments have demonstrated that
MLFNNSs offer optimal estimations for FRP-wrapped sections
[48, 49]. MLFNNs encompass two distinct processes: Forward
Propagation. Also known as the input signal, this process
involves feeding data into the neural network via input neurons
in the input layer. The data is then transmitted to neurons in the
first hidden layer, where each neuron computes an output based
on its current weights, biases, and activation function. This
information is subsequently processed in subsequent layers until
it reaches the output layer, where the network generates
predictions/output [50]. Backward Propagation: Following
forward propagation, the network's predicted values are
compared to the actual target values, and the error is determined
using a loss function. The mean squared error is commonly
employed as the loss function in regression applications [51]. In
this research, the loss function employed during network
training is represented by Equation 1. The discrepancy between
the predicted and actual target values, quantified by Equation 1,
serves to evaluate the network's predictive accuracy. Where T;
is the target value and O; is the output from the DNN model.

Error = 1/23Y" ,(T; — 0,)? ey

Fig. 2 shows the processes of forward and backward
propagation, offering a clear view of the neural network
architecture. To reduce the error defined by the loss function, the
bias values and weights of the DNN are updated through
backward propagation, also known as error signal propagation.
In this process, the gradient of the loss function with respect to
each weight is calculated, moving in reverse from the output
layer back to the input layer, based on principles of calculus
[52]. After the gradients are obtained, the weights are adjusted
using an optimization algorithm, most commonly gradient
descent. This involves modifying the weights in the opposite
direction of the gradient to reduce loss [53]. The procedure is
repeated across many training cycles, allowing the weights to
gradually converge. As training advances, the model becomes
more effective at minimizing loss and improves its ability to
make accurate predictions or classifications on new, unseen
data.

2.2.2: Training & learning algorithms for DNN

The backpropagation (BP) learning method entails
transmitting the input values through the network in advance,
after which the difference between the estimated output and the

corresponding intended output from the training dataset is
calculated. This approach employs a gradient descent strategy to
minimize the value of the error function. The partial derivative
of the error function concerning each weight is used to determine
the necessary adjustments to the network's weights and bias
values for each moment. The chain rule of calculus is used to
determine the BP, which is based on the gradient-descent or
Jacobian technique. In many engineering applications, BP
learning has replaced other methods as the standard procedure
for modifying the weights and biases used in ANN training.
Gradient-descent BP has three drawbacks, though: (a) it can be
challenging to identify appropriate ANN topologies; (b) the
multifarious error planes that are produced have several local
minima, causing the BP to fall into local minimum rather than a
global minimum [54-57]. An additional issue with BP training
is that, due to variations in the initial weight and bias values, as
well as in the data partitioning into training, validation, and test
sets, an ANN may produce a different answer every time it is
trained. For the same input, various ANNs trained on the same
issue may produce different results. A neural network requires
at least three training sessions to ensure a high level of accuracy.
Twelve training algorithms in MATLAB are based on various
defining criteria used to train multilayer feedforward neural
networks (MLFFNNG5). The gradient or Jacobian method-based
training techniques are accessible through MATLAB's Neural
Network Toolbox software [58, 59].

2.2.3: Activation Functions

Activation functions within a neural network play a pivotal
role, imparting non-linear characteristics essential for the
network to undertake complex tasks beyond linear operations.
These functions determine the output of a neural network node
or neuron by processing a collection of inputs and their
associated weights. The network's ability to discern intricate
patterns and correlations in data hinges significantly upon these
activation functions [60]. The selection of an appropriate
activation function has a profound impact on the efficacy and
capabilities of the neural network's learning process. Previous
research suggests that the choice of activation function between
layers varies depending on how input parameters are processed
and normalized, i.e., how they are integrated into the DNN [60].
In scenarios where identification and regression analysis
problems necessitate normalizing input and output parameter
values within the range of 0 to 1, the "log-sigmoid" function
typically links the initial two layers (Input and hidden layers) of
the DNN. In comparison, the "linear" activation function
connects the last two layers (the last hidden and output layer)
[61].

2.2.4: Structural Design of Neural Networks: Exploring
Architectural Constructs

The neural network comprises three fundamental
components: the Input layer, hidden layers, and Output layer
[62]. These layers consist of interconnected cells, known as
artificial neurons, which emulate the functionality of biological
neurons [63]. Fig. 2 provides a concise depiction of the neural
network architecture, where inputs are denoted by In1-n, hidden
layer neurons by HL1-21-n, and biases by B, along with their
respective neuron counts. Facilitated by the collected data,
neurons within the network receive inputs from the input layer,
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undergo transformations within the hidden layers, and
ultimately produce outputs in the output layer. Serving as
conduits between layers, neurons are assigned weights,
representing specific coefficients, which are then multiplied by
input values. Subsequently, the resultant products are
aggregated with bias values according to Equation 2. In
Equation 2, the interplay between bias values and the activation
function is highlighted as integral to the neural network's
learning dynamics. Here, the output is determined by the
activation function applied to the weighted sum of inputs,
adjusted by the bias term "b." This process signifies the crucial
role of bias in regulating the network's responsiveness to input
signals.

Output = f (X, (x; X wy) + b) @)

Each input xi is multiplied by its corresponding weight wi,
with the resulting products summed. The bias term, acting as an
additional adjustable parameter, contributes to fine-tuning the
network's responsiveness. This sum, along with the bias, is then
processed through the activation function, which determines the
neuron's output. This equation encapsulates the essence of
neural network connectivity, illustrating how the network
processes and integrates information across its layers. The
operational procedures conducted within a neuron are also
illustrated in Fig. 2. Specifically, Neuron HL2-1 is analyzed,
elucidating the detailed processes of summation and the
application of the activation function.
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Fig. 2. Basic Architecture of Neural Network And inside processing of
Neuron

III. DATA COLLECTION AND ANALYSIS:

A database comprising 125 samples was collected from
various studies [5, 64-69]. Some of these studies focused solely
on the confinement of circular concrete columns, serving as
control specimens to investigate the effects of confinement on
columns in greater detail, particularly regarding input
parameters such as corner radius and number of layers. During
the database development process, 10 parameters were
systematically recorded from each experimental program and
subsequently utilized as inputs for the neural network. These

parameters encompassed the diameter of columns (mm), column
height (mm), concrete's initial compressive strength (MPa),
steel's initial tensile strength (MPa), longitudinal reinforcement
ratio (As/Ag, %), temperature of fire (°C), fire exposure time
(Mins), number of layers of CFRP (Count), thickness of CFRP
(mm), and tensile E-modulus of CFRP (GPa). Additionally, the
axial load capacity (in kN) of the columns was recorded as the
output variable for the proposed neural network. The collected
samples from various experiments are presented
comprehensively in Table 1. The data obtained from the
literature was divided into three distinct subsets: training,
validation, and testing. Seventy percent of the collected data was
allocated for training the neural networks, while the remaining
30% was divided equally into validation and testing subsets,
each comprising 15% of the dataset.

TABLE I. SAMPLE OF COLLECTED DATA FROM LITERATURE

_ o = 3 N EnR =
HEREE IR R LR R EE
S A |EHE| S |EE|c Bz 22 |25 L
Sl E] gET| T [EE|ET|E | RO &% TS
200 | 1000 | 53 | 553 | 1.6 0 0 0 0 0 1439
200 | 1000 | 53 | 553 | 1.6 0 0 0 0 0 1397
200 | 1000 | 53 | 553 | 1.6 |500 | 210 | O 0 0 826
200 | 1000 | 53 | 553 | 1.6 | 500 | 210 | O 0 0 946
200 | 1000 | 53 | 553 | 1.6 | 500 | 210 | 1 0.117 | 240 | 1356
200 | 1000 | 53 | 553 | 1.6 | 500 | 210 | 1 0.37 230 | 1701
200 | 1200 | 35 | 420 | 1.5 0 0 0 0 0 1353
200 | 1200 | 35 | 420 | 1.5 0 0 0 0 0 1351
200 | 1200 | 35 | 420 | 1.5 0 0 0 0 0 1355
200 | 1200 | 35 | 420 | 1.5|300 | 230 | O 0 0 1196
200 | 1200 | 35 | 420 | 1.5|300 | 230 | O 0 0 1198
200 | 1200 | 35 | 420 | 1.5 ]300 | 230 | 1 0.117 | 230 | 2431
200 | 1200 | 35 [ 420 | 1.5]300 | 230 | 1 0.117 | 230 | 2436
200 | 1200 | 35 | 420 | 1.5 | 600 | 400 | O 0 0 972
200 | 1200 | 35 | 420 | 1.5 | 600 | 400 | O 0 0 977
200 | 1200 | 35 | 420 | 1.5 | 600 | 400 | 1 0.117 | 230 | 2160
200 | 1200 | 35 [ 420 | 1.5 | 600 | 400 | 1 0.117 | 230 | 2163
200 | 1200 | 35 | 420 | 1.5 900 | 600 | O 0 0 709
200 | 1200 | 35 | 420 | 1.5 900 | 600 | O 0 0 713
200 | 1200 | 35 | 420 | 1.5 | 900 | 600 1 0.117 | 230 | 1761
200 | 1200 | 35 | 420 | 1.5 | 900 | 600 1 0.117 | 230 | 1765
370 | 1000 | 50 | 500 | 1.6 0 0 0 0 0 3957

To optimize the efficacy and performance of the training
process for deep neural networks (DNNs), it is essential to
normalize all variables contained within the database [60].
Following the training process, the output may be denormalized
to facilitate comparative analysis. To mitigate challenges
associated with low DNN learning rates [53], parameter values
should be normalized within an acceptable upper and lower
threshold range for each respective parameter. Thus, to refine
the accuracy of estimations generated by the proposed NN
model, all parameters extracted from the literature have been
normalized between 0.9 and 0.2, considering variations in units.
Equation 3 has been used to normalize variables pertinent to
rectangular and square concrete columns.

Y= (0.8/8) Xy + (0.9 — (0.8/8) X)ymar ) (3)
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", n

In the normalization process, "y" represents the
original value of the variable obtained from the developed
dataset, while "Y" denotes the normalized value of the
variable. The symbol "A" signifies the difference between
the maximum and minimum values of the variable. For
instance, in the case of the Diameter of Columns variable,
the minimum value (ymin) was determined to be 150 mm,
and the maximum value (ymax) was 370 mm. After
normalization, the lowest value was transformed to 0.1,
and the highest value became 0.9. Similarly, all other
variables underwent normalization within the range of 0.1
to 0.9 before being used as inputs for model training.

3.1: Structure of Neural networks:

The architecture of DNN models plays a critical role in
shaping their predictive capabilities. Determining the
appropriate activation functions to be employed between each
layer, as well as the total number of neurons in each layer and
the overall number of hidden layers in the network, is crucial.
However, due to the lack of standardized guidelines, the
architecture of DNNSs is tailored to the specific characteristics of
the subject matter and is refined through iterative
experimentation. The variables associated with each of the NN
structures investigated in the present study, aimed at identifying
the most efficient architecture, are detailed in Fig. 3.

MD1-6-00 MD2-8-00 MD3-10-00
©
© =

D
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Fig. 3. Structure of proposed DNN Models

The study employed MATLAB to construct seven distinct
models aimed at predicting the axial capacity of heat-damaged,
CFRP-repaired circular concrete columns. Among these models,
four utilized a single hidden layer (HL), while the remaining
three featured double hidden layers. Activation functions were
strategically chosen, with the sigmoid function employed
between the input layer (IL) and the HL, as well as between the
first and second HL. tanh function was applied between the
output layer (OL) and last hidden layer (LHL). All of the models
were trained for the number of epochs set, and this was set at
300.

One aspect of the backpropagation (BP) learning involved
passing input values through the network and computing the
difference between the output predicted and the target output
from the training database. It employed a gradient-descent
method for minimizing the error function, an inexpensive
scheme to update weights and biases in neural network training
in many scientific disciplines [62]. Thus, the LEARNGDM
learning algorithm was applied in MATLAB for pre-training the
DNN:s in this study. Moreover, previous studies stressed that

second-order learning algorithms should be employed for
effective and efficient training. As such, the TRAINLM
algorithm, which is a member of the Newton family employing
the Levenberg-Marquardt (LM) algorithm, was employed as the
Training Algorithm for all the DNN models developed in this
study [55, 56].

All the models consisted of ten input variables, i.e., diameter
of columns (mm), column height (mm), initial compressive
strength of concrete (MPa), initial tensile strength of steel
(MPa), longitudinal reinforcement ratio (As/Ag %), fire
temperature (°C), fire exposure duration (minutes), layers of
CFRP (Count), thickness of CFRP (mm), and tensile E-modulus
of CFRP (GPa). The output of every model was the axial
capacity of square and rectangular concrete columns
rehabilitated with CFRP following exposure to fire.

3.2: Analytical Approaches for Error Assessment:

Furthermore, this study employs three additional statistical
tools Root Mean Squared Error (RMSE), Mean Squared Error
(MSE), and Mean Absolute Error (MAE) to assess the
performance of the DNN models. The highest value of R and the
lowest values of RMSE, MSE, and MAE indicate the most
optimal model. Table. 2 shows the formulas used to calculate the
correlation factor (R), RMSE, MSE, and MAE, respectively.

TABLE II. DNN MODEL EVALUATION METRICS [70]

Metric Definition Equation
n
Mean absolute =1 !
MAE b MAE = ; L |vi - vi|
yi—y
MAPE Mean absolute | NJAPE = J]_, Z ,1 ‘_1!, ‘ % 100%
percentage error =Y
Root mean square 1 & (vi—y 2
RMSE — £ A4 )
S error RMSE n, 1 Yi i
=
2 o (i)’
R? Goodness of fit R==1- - o
Yio (vi—7)

IV. MODEL ANALYSIS

4.1 Multiple regression analysis

Regression analysis typically requires a robust relationship
between the independent and dependent variables. On the other
hand, when there is a significant relationship between
independent variables, referred to as "multicollinearity," it can
cause issues with the analysis. There is no universally
recommended or universally acknowledged method for
resolving the problem of multicollinearity, as it is a result of the
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inherent characteristics of the data. A multinomial model is
created to forecast the axial capacity of a fire-damaged and
CFRP-repaired circular column. In summary, the regression
model can be described as follows: Table 3 presents the
statistical parameters derived at the 95% confidence level, which
is a regularly utilized level in statistical data analysis.

The models' validity was evaluated based on several criteria,
including the behavior of the correlation coefficient (R), the T-
test, the F-test, and the Durbin-Watson test. The statistical
findings obtained for all models are presented in Table 3. The
correlation coefficient for Model 1 is within an acceptable range,
with an R value of 0.936. A high coefficient of regression does
not necessarily reflect the superiority of the model. The validity
of a model cannot be determined solely based on the value of R.
The findings of a t-test, F-test, and Durbin—Watson test, were
applied to verify consistency between the model and the
experimental observations. Multiple regression analysis (MRA)
was performed together with an analysis of variance (ANOVA)
or the F-test. ANOVA was used to evaluate the importance of
deviations from both linear and non-linear patterns in the
established regression models.

TABLE III. SUMMARY STATISTICS FOR THE MODEL OF MRA (AT THE 95%

CONFIDENCE LEVEL)
=| 5
- E - E ‘5 S|l @
s o 3 s © ® |0l &l 8=
2% % S 2 | BI535| B4
o s > e < AR
= = &) \ = | =
— - | =2
a
(Constant) -2208 2.50 0.01
Column Dia (mm) 17.1  16.36  0.00
Column Height (mm)| -0.2  -0.65 0.51
Initial Compressive
Strength of Concrete 350783000
Initial Tensile
Strength of steel 48 212003
Final Axial As/Ag . 6122 241 0.01 g © a § o
Capacity (kN) Temperature at which 25 390 000|2|al2|S :
heated
Fire Exposed | 58 545 .01
Time
No of Layers of
CFRP 177 3.28 0.00
Thickness of CFRP [-179.5 -0.96 0.33
Tensile Modulus of
CFRP 6.07 9.08 0.00

In essence, it assisted in identifying whether the regression
line was the best-suited curve to illustrate the link between the
sample datasets of two correlated parameters. The null
hypothesis, denoted as Ro = 0, states that there is no relationship
between the two factors analyzed through ANOVA. The
ANOVA model produced two outcomes: an F-statistic, which
shows the extent to which the regression formula properly fits
the dataset, and another statistic that reflects the significance
level of the F-test. If the latter statistic was less than 0.05 at a
95% confidence threshold, the null hypothesis of Ro = 0 was
rejected. This demonstrates an association between axial
capacity and the target predictor variable, which may be

expressed through either a linear or non-linear formula with 95%
reliability. Otherwise, it was assumed that the relationship could
not be explained as a regression model. Since the F-statistics
were less than 0.05, the null hypothesis was dismissed,
confirming that the model is valid.

The t-test was employed to evaluate the statistical relevance
of the variables in each model, with a 95% confidence threshold.
By considering the degrees of freedom linked with each
parameter, a t-statistic derived from the experimental results can
be compared to a critical value in reference tables. If the
calculated t-statistic surpasses the tabled critical value, it implies
that the parameter is statistically meaningful at a 95%
confidence threshold, with a significance level below 0.05.
Thus, the parameter is deemed significant to the model. The
obtained p-value for the Column height variable is greater than
0.05 (0.516), suggesting that column height exerts only a
minimal effect on axial capacity after the rehabilitation of a fire-
damaged column using CFRP.

The Durbin—Watson test was performed to check the degree
of multicollinearity. Ideally, Durbin—Watson results should lie
between 1.5 and 2.5. The Durbin—Watson value calculated for
this model is 2.452, which satisfies this condition. Therefore,
this model is not affected by any issues connected to
multicollinearity. Fig.4 displays the axial capacity values
estimated by the regression model, in comparison with the
values observed in experimental tests.

9000 R? =0.9357

8000
g;fooo . 2P e
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3 so00 Q9.
2 o
= °
% 4000 °°
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Fig. 4. Comparison of predicted and observed axial capacity for Regression
Model

In every instance, the data points are evenly distributed
around the r = 1 line, indicating that the models are both
plausible and dependable for real-world use. The regression
analysis reveals a significant connection between the calculated
and anticipated values, as evidenced by the correlation factor (R)
of 0.9357. This regression model can be used to forecast the
axial capacity of a fire-damaged, repaired concrete column
constrained by CFRP.
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4.2 Analysis of DNN Models:

In this study, the pursuit of the most accurate and optimal
DNN model involved the development of seven distinct DNN
models. Among these models, the selection criteria prioritized
the identification of the model with the lowest values of RMSE,
MSE, and MAE, while also considering the highest correlation
factor (R). Initially, single-hidden-layer models were explored,
with the number of neurons ranging from 6 to 12. Among these,
the model with 10 neurons in the first hidden layer demonstrated
the highest correlation factor (R). Subsequently, for models
featuring 10 neurons in the first hidden layer, a second hidden
layer was introduced, with the number of neurons varying from
8 to 12. Among these two-layered models, it was observed that
DNNG6-10-10, characterized by 10 neurons in both the first and
second hidden layers, exhibited the highest correlation factor (R)
and the lowest values of RMSE, MSE, and MAE.

Fig. 5 illustrates the correlation factors of various models,
depicting four correlation factor values for each model: training
correlation factor, validation R wvalue, testing R value, and
overall correlation factor of the model. It is discerned that MD
1-6-00 exhibits the lowest R value for training, at 0.97689,
whereas MD 6-10-10 demonstrates the highest R value for
training, standing at 0.99926. In contrast, MD 1-6-00 displays
the lowest R value for validation, with a magnitude of 0.98256,
while MD 6-10-10 boasts the highest R value for validation at
0.99805. Additionally, MD 8-10-08 registers the lowest R value
for testing, at 0.97191, whereas MD 6-10-10 secures the highest
R value for testing, with a value of 0.99748. Overall, it is evident
that MD 6-10-10 boasts the highest overall correlation factor
compared to all other models, standing at 0.99852. Conversely,
MD 1-6-00 holds the lowest overall correlation factor value, at
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Fig. 5. Training, Validation, Testing and Overall Correlation Factor for DNN
Models and optimized MD 6-10-10

In Fig. 5, the correlation factor (R) values of Training,
Validation, Testing, and the overall R value for MD 6-10-10 are
displayed. The correlation factors for training, validation,
testing, and overall are determined to be 0.99926, 0.99805,
0.99748, and 0.99852, respectively. While similar graphs were
generated for all other models using MATLAB, MD 6-10-10 is
highlighted here due to its proven optimality. The visual
representation of R values for MD 6-10-10 indicates a close
alignment of the data distribution with the mean line, suggesting
strong predictive performance.

4.3 Essential Traits of the Perfect Model:

MD 6-10-10 stands out as the most optimal model,
characterized by the highest overall correlation factor (R) of
0.99852 and the lowest values of RMSE, MSE, and MAE. MD
6-10-10 is a double-hidden layered neural model, featuring 10
neurons in the first hidden layer and an additional 10 neurons in
the second hidden layer. The general architecture of MD 6-10-
10 is depicted in Fig. 6.
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Fig. 6. Architecture of MD 6-10-10
V. RESULTS AND DISCUSSION

It is crucial to visually assess the predictive behavior of the
model in comparison to the original experimental data collected.
Fig. 7 depicts the variation of the predicted axial load capacity
by the MD 6-10-10 model and the regression Model relative to
the axial load capacity obtained from prior experimental
investigations. The analysis reveals that the model's predictions
closely align with the original values documented in the
literature. Subsequent sections will delve into a more detailed
examination of these findings.

Fig. 8 shows the overall correlation factor (R), RMSE, MSE,
and MAE of all eight models developed in the present
investigation. From Fig. 8, it is clear that with MD6-10-10
exhibiting the highest overall correlation factor of 0.99852, the
Figure also displays the Root Mean Square Error (RMSE) of all
models, where MD6-10-10 shows the lowest overall RMSE
value of 0.0580, and MD1-6-00 has the highest RMSE value
among all other models at 0.415. The Mean Square Error (MSE)
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of all models is presented, with MD6-10-10 once again having
the lowest overall MSE value of 0.00337, and MD1-6-00
exhibiting the highest MSE value of 0.1726.

® - Experimental ©  Optimized DNNModel @ - Regression Model

(2016)—yields useful data regarding predictive performances of
the two models. In Yaqub et al. (2010), the DNN model
outperformed the regression model across the board with lower
percentage errors. Similar outcomes were observed in research
conducted by Hussain et al. (2022) and Jia Xu et al. (2022),
where experimental values were better followed by DNN
predictions. Again, comparison with Al Nimry et al. (2016)

7000 s, 1L again validated the improved performance of the DNN model
g 6000 555;,‘,--:. over regression analysis.
g 50 L
- F o Despite variations in experimental conditions between the
£ sw0 *ete . selected studies, the DNN approach consistently yielded more
o % ikt < 3 B8R precise results. This proves its robustness and adaptability in
1000 “;ﬁ,- 'y 'u.:, w:ﬁ - o e = 10t 1 1 1
o ° = w g T et predicting the axial capacity of fire-damaged, CFRP-repaired
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Fig. 7. Comparison between MD 6-10-10 And regression Model predictions
and Data collected from Literature review

Similarly, MD6-10-10 has the lowest value of Mean
Absolute Error (MAE) among all the models. Finally, the
comparison between the optimum DNN Model and the
regression Model has also been done.

MSE (%)

concrete columns under different conditions. Overall, these
findings emphasize the potential of advanced machine learning
methods namely DNNs in structural engineering. By
representing complex relationships in the data, DNN models
create more precise predictions, which can allow for better
decision-making and aid design methods for fire-damaged
structural members.

TABLE IV. ERRORS BETWEEN PREDICTED AND EXPERIMENTAL VALUES OF
BOTH DNN AND REGRESSION MODEL

Comparison With Experimental Study by Yaqub et al.,2010 [5]

Comparison With Experimental Study by Xu et al.,2022 [66]

. Predicted Predicted Value Regression

e wiesc Exps]r linental Valueby by Regression EN M°f/el Model Error
alue NN model  Model rror (%) (o)
' e 1439 1422.26 1172.92 1.16 18.49
1397 1422.26 1172.92 1.81 16.04
" ' 826 880.66 497.74 6.62 39.74
946 880.66 497.74 6.91 47.39
. " 1356 1358.32 2109.72 0.17 55.58
1701 1707.92 2003.64 0.41 17.79

i} . Predicted Predicted Value Regression
T e Exp::/rl;nental Value by by Regression EN Mood/el Model Error
alue NN model Model rror (%) (%)
3957 3959.50 4226.29 0.06 6.81
‘ 4438 4436.91 4751.41 0.02 7.06
. 6213 5912.24 5626.59 4.84 9.44
4727 4728.44 5829.30 0.03 23.32
6068 6384.10 6006.28 5.21 1.02
- 4499 4728.44 5829.30 5.10 29.57
Comparison With Experimental Study by Hussain et al.,2022 [65]
] o i o ) ] Experimental Predicted Predicted Value NN Model Regression
Fig. 8. Statistics of Errors in prediction of axial capacity by proposed models Value by by Regression o,y Model Error
Value  NNmodel  Model  FTrCR) ey
1353 1351.50 1083.31 0.11 19.93
5.1 Assessing Prediction Capabilities of Regression and DNN 1351 1351.50 1083.31 0.04 19.81
1355 1351.50 1083.31 0.26 20.05
Models 1196 1200.95 966.94 0.41 19.15
1198 1200.95 966.94 0.25 19.29
Table IV shows percentage errors between test results and 31 12868 251826 0o 359

predictions of the Deep Neural Network (DNN) model and the
regression model in the selected studies [5, 65—67]. The table
gives an overview of prediction accuracy, outlining the strengths
and weaknesses of each model in approximating the axial
capacity of fire-damaged concrete columns repaired with
Carbon Fiber Reinforced Polymer (CFRP). The percentage error
of each experimental value was calculated between the value
and the corresponding predictions of both approaches as a direct
reflection of model performance.

The comparison of four studies—Yaqub et al. (2010),
Hussain et al. (2022), Jia Xu et al. (2022), and Al Nimry et al.

Comparison With Experimental Study by Al-Nimry et al.,2016 [67]

. Predicted Predicted Value Regression
Exp :]r linental Value by by Regression EN Mood/el Model Error
alue NN model Model rror (%) (%)
988 983.42 1028.18 0.46 4.07
990 983.42 1028.18 0.66 3.86
534 542.11 103.13 1.52 80.69
536 542.11 103.13 1.14 80.76
457 449.45 269.71 1.65 40.98
459 449.45 269.71 2.08 41.24
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Furthermore, the comprehensive examination of the deep
neural network (DNN) and regression models in various
research highlights the wider range of uses and the higher
performance of the DNN.

DNN model utilizes advanced machine learning techniques,
that is, Multilayer Feedforward Neural Networks (MLFNNSs), to
effectively learn from data and tune its predictions for different
experimental conditions. This leads to more robust and accurate
results. Generally, the analyses made in the paper highlight the
relevance of adding the latest machine learning techniques, that
is, deep neural network (DNN) models, to the field of structural
engineering research and application. These techniques offer a
possible means of enhancing the accuracy of prediction and
aiding smart decision-making in structural system design and
structural system assessment. Figure 9 shows the graphical
Representation of the prediction by the DNN and the prediction
by the regression model and the comparison with experimental
result.
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Fig. 9. DNN and Regression Model Prediction Comparison with Experimental
Studies by (a) Yaqub et al.,2010 [5] (b) Hussain et al.,2022 [65] (c¢) Xu et
al.,2022 [66] (d) Al-Nimry et al.,2016 [67]

5.2 Analysis Of Effect Of Predictors On Final Axial Capacity

Fig.10 describes the effect of both fire temperature and
duration of fire on the axial capacity of circular columns
rehabilitated with Carbon Fiber Reinforced Polymer (CFRP)
following fire damage. There is a definite reduction in the axial
capacity with the increase in exposure time and fire temperature,
as the trend suggests. This is consistent with the expected
performance of structures that have been damaged by fires.
Long-duration heating deteriorates strength and stability as the
structural members increasingly lose their ability to sustain axial
loads. Furthermore, rising fire temperatures increase this
deterioration further lowering the column's integrity. Thus, the
lowest axial capacity is observed when temperature and duration
of fire are at their highest values. This trend further advocates
for the importance of incorporating fire effects into structural

element design and assessment, particularly in CFRP-
strengthened concrete columns. An understanding of column
behavior under fire exposure is essential to ensure they are safe
and trustworthy in real-world conditions. Lastly, results from
Fig. 10 can be employed towards the development of design
considerations and guidelines for improving structural system
fire resistance as well as overall performance under fire-exposed
environments.

Fire Temperature of 300°C Fire Temperature of 600°C === Fire Temperature of 900<C

200 250 300 350 400 450 500 550 600
FIRE EXPOSED TIME(MIN)

Fig. 10. Effect of Fire Exposed Time and Fire Temperature on Axial strength
of Fire damaged, CFRP repaired Circular Columns

Fig. 11 illustrates the correlation between the quantity of
Carbon Fiber Reinforced Polymer (CFRP) layers and the fire
temperature on the axial capacity of fire-damaged circular
columns that have been restored using CFRP. The illustrated
pattern demonstrates that the axial capacity rises as the number
of CFRP layers increases, whereas it decreases as the fire
temperature rises. The increase in axial capacity resulting from
the addition of more CFRP layers aligns with the strengthening
impact of CFRP materials on columns damaged by fire. Extra
layers of CFRP strengthen the structural reinforcement, hence
boosting the overall load-carrying capability of the columns.
This event highlights the efficacy of CFRP as a reinforcement
material in mitigating the adverse effects of fire-induced damage
on structural integrity.

On the other hand, the reduction in the ability to bear weight
along the axis as fire temperatures increase emphasizes the
harmful effect of high thermal conditions on the strength and
stability of the structure. As the temperature of the fire rises, the
mechanical characteristics of both the concrete and CFRP
materials deteriorate, resulting in a decrease in the structural
integrity. Therefore, the axial capacity is at its lowest when there
are no CFRP layers and the fire temperature is at its highest,
indicating the most extreme conditions for structural
performance. Figure 11's insights highlight the importance of
considering the quantity of CFRP layers and fire temperature
when designing and evaluating fire-damaged structures repaired
with CFRP. Engineers can enhance the fire resistance and
resilience of structural systems by understanding the interaction
between these components. This understanding allows them to
optimize strengthening measures, ensuring the safety and
longevity of the systems in fire-prone areas.

Fig. 12 illustrates an examination of how the quantity of
Carbon Fiber Reinforced Polymer (CFRP) layers and the
temperature of fire exposure affect the axial capacity of circular
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columns that have been restored with CFRP after being damaged
by fire. The trends shown indicate a direct relationship between
the number of CFRP layers and axial capacity, while a reverse
relationship is detected between fire exposure time and axial
capacity.
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Fig. 11. Effect of No of CFRP layers and Fire Temperature on Axial strength
of Fire damaged, CFRP repaired Circular Columns

Moreover, Fig. 12 clearly illustrates that the highest axial
capacity is achieved when two layers of CFRP are used, with no
fire exposure. This discovery highlights the synergistic effect of
CFRP reinforcement and the absence of fire-induced damage,
resulting in exceptional structural performance. The
significance of Fig. 12 lies in its ability to emphasize the
necessity of thoroughly evaluating the quantity of CFRP layers
and the duration of fire exposure when designing and restoring
structures damaged by fire. Engineers can enhance the fire
resistance and resilience of structural systems in fire-prone
situations by deliberately optimizing these parameters. This
ensures the safety and longevity of the systems.

6000-7000
w 5000-6000
= 4000 5000
= 3000 4000
® 2000 3000

® 1000 2000

Fig. 12. Effect of No of CFRP layers and Fire Exposed Temperature on Axial
strength of Fire damaged, CFRP repaired Circular Columns

VI. CONCLUSION

The performance assessment of the tested Artificial Neural
Network (ANN) models in forecasting the axial capacity of fire-

damaged columns repaired with Carbon Fiber Reinforced
Polymer (CFRP) has proven their superiority over Multiple
Regression Analysis (MRA), as evidenced by comparisons of
various performance indices. The results highlight the efficacy
of ANN models in accurately forecasting axial capacity,
particularly when compared to empirical data from multiple
studies. Nevertheless, it is acknowledged that the artificial
neural network (ANN) method would be advantageous if a more
extensive and varied training set were created to augment its
predictive skills further. After conducting a thorough analysis
using ANN and MRA techniques the following conclusion can
be drawn:

e MD 6-10-10 stands out as the most optimal model,
characterized by the highest overall correlation factor (R) of
0.99852 and the lowest values of RMSE, MSE, and MAE
with RMSE (%) = 0.058, MSE (%) =0.0033 and MAE (%)
=3.38. MD 6-10-10 is a double hidden layered neural model,
featuring 10 neurons in the first hidden layer and an
additional 10 neurons in the second hidden layer.

e The ANN models, especially MD6-10-10, accurately
predicted the axial capacity when compared to Experimental
data from various studies. This highlights the potential of
ANN models in aiding the design process for repairing fire-
damaged Circular concrete columns with CFRP composites.

e During the comparative study of Predicted Results with the
original experimental studies conducted in the literature. It
is established that the proposed DNN model gives accurate
results with an absolute error as low as 0.02%. Hence the
developed model can be used during the design process of
repairing fire damaged Circular concrete columns with
CFRP composites.

e While MRA is simple and does not require sophisticated
software, it may not accurately represent nonlinear
relationships in the data. ANN models, on the other hand,
are highly effective in capturing complex and nonlinear
functional connections. Despite requiring sophisticated
computations and extensive training data, ANN models
offer superior predictive accuracy and flexibility with low
error percentage of 0.02%

e The predictions indicated that the number of CFRP layers
significantly influences the restored axial strength of fire-
damaged columns. Two Number of CFRP layers result in
up to 83% increase in axial strength.

o The duration and temperature of the fire are critical factors
affecting the repaired axial strength. Higher fire duration
and temperature result in lower repaired axial strength.

These findings underscore the dependability and suitability
of the developed ANN models, particularly the MD6-10-10
model, in assisting the design process of restoring fire-damaged
columns using CFRP composites. The insights gained from this
study provide valuable guidance for engineers to enhance repair
strategies and ensure the safety and resilience of structures in
fire-prone environments.
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