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Abstract 

This paper presents a study that extends the application of carbon fiber reinforced polymer (CFRP) composite confinement technology 

to strengthen circular concrete columns damaged by fire. This study utilized data from 125 column specimens sourced from the literature. 

It examined ten parameters: column diameter, height, initial compressive strength of concrete, initial tensile strength of steel, longitudinal 

reinforcement ratio, fire temperature, exposure time, number of CFRP layers, CFRP thickness, and CFRP tensile modulus, which were 

used as inputs for the model. The objective was to predict the ultimate axial strength of fire-damaged circular columns repaired with 

CFRP composites. This study employs both multiple regression analysis and a deep neural network (DNN) to predict the structural 

behavior of reinforced concrete (RC) columns and accurately forecast their repaired axial capacity. The proposed deep neural network 

(DNN) model demonstrated a robust agreement with experimental investigations, boasting an overall correlation factor (R) of 0.99852. 

Deep neural networks outperformed multiple regression analysis in predicting axial strength, with predictions closely matching 

experimental results from previous studies. The work also presents a parametric study to examine the effect of different input parameters 

on the axial strength of RC columns. Parametric analysis indicates that the repaired axial strength increases with higher concrete initial 

compressive strength, greater CFRP thickness and tensile modulus, and more CFRP layers, whereas it decreases with higher fire 

temperatures, longer exposure durations, and larger column diameters. 

 

Keywords: Carbon Fiber Reinforced Polymer, Deep Neural Network (DNN), Heat Damaged, Circular Concrete Columns. 

Received: September 12, 2025 / Revised: November 15, 2025 / Accepted: November 18, 2025 / Online: January 01, 2026 

 

I. INTRODUCTION 

Externally bonded fiber-reinforced polymer (FRP) 
circumferential wraps are a preferred method for restoring or 
enhancing the capacity and ability to resist distortion of concrete 
columns. There is considerable research evidence supporting the 
use of FRPs in different applications. Additionally, numerous 
computational models exist for designing FRP strengthening 
techniques for both circular and rectangular concrete columns 
under ambient conditions [1, 2]. There is an increasing body of 
research [3, 4] that has examined the behavior of reinforced 
concrete columns enhanced with FRP wraps during fire 
exposure. These columns have either been exposed to elevated 

temperatures or have had their mechanical characteristics 
diminished due to thermal effects [5].  

Fire is a prevalent natural phenomenon with significant 
potential for causing extensive damage to buildings if left 
uncontrolled. There has been a global increase in incidents of 
structures being damaged by fire, with concrete structures being 
particularly vulnerable due to the loss of structural integrity 
during and after such events [6, 7]. Owners and insurers of 
infrastructure aim to minimize financial losses resulting from 
building closures and operational disruptions by demanding 
reliable, cost-effective, and expedient repair techniques [8]. In 
response, various methods have been employed, including the 
use of concrete or steel jacketing for column strengthening. 
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However, contemporary practices favor fiber-reinforced 
polymer (FRP) due to its rapid application and lightweight 
nature, which has been demonstrated to strengthen and repair 
damaged structures effectively [9,10]. Although considerable 
research has been conducted on retrofitting concrete columns 
with FRP [11-20], limited attention has been given to fire-
damaged circular concrete columns [4]. The lack of research in 
this specific area is primarily due to uncertainties regarding the 
performance of FRP in fire conditions following repair [21]. 
Nevertheless, it has been noted that FRP can perform well in fire 
conditions when appropriate fire insulation measures are applied 
[22-29] 

Concrete structures generally show excellent resistance to 
fire [30] and can typically be repaired after a fire incident [31]. 
This is mainly due to the fact that the concrete shell has 
comparatively low heat conductivity. As long as it stays intact, 
it protects the concrete core and embedded reinforcement at 
relatively reduced temperatures even during extended periods of 
severe heating. By reducing the harmful effects of heat on the 
material properties of the reinforcing bars and the core concrete, 
this method maintains the structural stability and ensures 
sufficient fire resistance, provided the member has been 
properly constructed [32]. 

With progress in scientific disciplines, machine learning 
(ML) and artificial intelligence (AI) have advanced considerably 
and are now broadly utilized across multiple industries. Deep 
learning, in particular, has become prominent in addressing a 
wide range of engineering problems [33–38]. Previous studies 
have applied neural networks (NNs) to predict the compressive 
strength of FRP-confined concrete [39–42], showing the 
usefulness of NNs in estimating such behavior based on material 
and structural factors. In existing literature, NN-based modeling 
has been employed to predict several parameters, such as the 
load capacity of fiber-reinforced cement-based matrix-encased 
columns, fire resistance of hollow steel members filled with 
concrete, residual strength of High-Performance Concrete 
(HPC) exposed to elevated heat, and load-bearing capacity of 
thermally damaged concrete strengthened with Glass Fiber-
Reinforced Polymer (GFRP) [43–45]. However, in the scope of 
this research, which investigates the impact of Carbon Fiber-
Reinforced Polymer (CFRP) on fire-deteriorated circular 
columns, there is a clear gap in published work addressing the 
creation of a DNN model for this purpose. To address this gap, 
the present study aims to develop and validate an optimized 
DNN that predicts the ultimate axial strength of CFRP-repaired, 
fire-damaged circular concrete columns using a curated database 
of 125 experimental specimens and ten key input parameters. 
The novelty of this work lies in applying a tailored DNN 
architecture to a comprehensive fire-damage dataset, comparing 
its performance with multiple regression analysis, and coupling 
the model with a parametric sensitivity study to produce 
actionable guidance for repair design and fire-resilience 
assessment 

II. METHODOLOGY 

To establish a robust Deep Neural Network (DNN) model 
and a regression model for predicting the axial capacity of fire-
damaged circular concrete columns repaired with Carbon Fiber 
Reinforced Polymer (CFRP), a comprehensive database 

comprising 125 specimens sourced from existing literature was 
compiled. The collected data were first normalized and then 
used for training the DNN models. Seven models in total were 
built with each model possessing a different neural structure 
based on Multilayer Feedforward Neural Networks (MLFNNs) 
for the prediction of axial capacity of fire-damaged concrete 
columns repaired with CFRP. The models were well-tested and 
the best one was selected with the highest accuracy of 
prediction. This optimum DNN model, together with regression 
analysis, were subsequently employed to forecast the axial 
capacity of the repaired columns, and the results were compared 
against experimental findings presented in the literature. 
Besides, the model was also utilized to examine the influence of 
various parameters such as column height, initial compressive 
strength of concrete, heating duration, fire exposure 
temperature, and number of layers of CFRP on the axial capacity 
of CFRP-strengthened fire-damaged circular columns. A 
schematic outline of the approach adopted in this research is 
presented in Fig. 1 to illustrate the process step by step. 

 

 

2.1  Linear regression model 

Multivariable linear regression analysis (MRA) was applied 
to evaluate the influence of several independent variables on the 
dependent variable. In this approach, the dependent variable is 
modeled as a linear combination of two or more predictors, as 
represented by the general MRA model as  

Y=a+b1 Xa+b2 Xb+.………...bk Xk±e 

In this model, Y denotes the dependent variable; a is the 
intercept; b₁, b₂, …, bₖ represent the regression coefficients 
corresponding to the independent variables Xₐ, Xb, …, Xₖ; and e 
denotes the error term. The regression models were developed 
using the enter method in the Statistical Package for Social 
Sciences (SPSS), where all variables in a block are introduced 
simultaneously in a single step. 

Fig. 1.  The procedure of the present investigation. 
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Multivariable linear regression analysis (MRA) is associated 
with several statistical parameters that provide insights into 
model performance and reliability. Among the most important 
are: the coefficient of determination (R²), the correlation 
coefficient (R), the adjusted coefficient of determination 
(adjusted R²), the standard error of the regression coefficient, the 
confidence level, the standard error of estimate, model error, the 
significance level (p-value), the t-distribution, the F-distribution, 
and the residuals [46, 47]. 

2.2: Neural Network Modelling: 

2.2.1: Forward and Back propagation: 

In the present study, multilayer feedforward neural networks 
(MLFNNs) were employed to develop models for predicting the 
axial capacities of CFRP-repaired, fire-damaged rectangular and 
square columns. Previous experiments have demonstrated that 
MLFNNs offer optimal estimations for FRP-wrapped sections 
[48, 49].  MLFNNs encompass two distinct processes: Forward 
Propagation. Also known as the input signal, this process 
involves feeding data into the neural network via input neurons 
in the input layer. The data is then transmitted to neurons in the 
first hidden layer, where each neuron computes an output based 
on its current weights, biases, and activation function. This 
information is subsequently processed in subsequent layers until 
it reaches the output layer, where the network generates 
predictions/output [50]. Backward Propagation: Following 
forward propagation, the network's predicted values are 
compared to the actual target values, and the error is determined 
using a loss function. The mean squared error is commonly 
employed as the loss function in regression applications [51]. In 
this research, the loss function employed during network 
training is represented by Equation 1. The discrepancy between 
the predicted and actual target values, quantified by Equation 1, 
serves to evaluate the network's predictive accuracy. Where Ti 
is the target value and Oi is the output from the DNN model. 

                      𝐸𝑟𝑟𝑜𝑟 = 1/2 ∑ (𝑇𝑖 − 𝑂𝑖)
2𝑛

𝑖=1                               (1) 

Fig. 2 shows the processes of forward and backward 
propagation, offering a clear view of the neural network 
architecture. To reduce the error defined by the loss function, the 
bias values and weights of the DNN are updated through 
backward propagation, also known as error signal propagation. 
In this process, the gradient of the loss function with respect to 
each weight is calculated, moving in reverse from the output 
layer back to the input layer, based on principles of calculus 
[52]. After the gradients are obtained, the weights are adjusted 
using an optimization algorithm, most commonly gradient 
descent. This involves modifying the weights in the opposite 
direction of the gradient to reduce loss [53]. The procedure is 
repeated across many training cycles, allowing the weights to 
gradually converge. As training advances, the model becomes 
more effective at minimizing loss and improves its ability to 
make accurate predictions or classifications on new, unseen 
data. 

2.2.2: Training & learning algorithms for DNN 

The backpropagation (BP) learning method entails 
transmitting the input values through the network in advance, 
after which the difference between the estimated output and the 

corresponding intended output from the training dataset is 
calculated. This approach employs a gradient descent strategy to 
minimize the value of the error function. The partial derivative 
of the error function concerning each weight is used to determine 
the necessary adjustments to the network's weights and bias 
values for each moment. The chain rule of calculus is used to 
determine the BP, which is based on the gradient-descent or 
Jacobian technique. In many engineering applications, BP 
learning has replaced other methods as the standard procedure 
for modifying the weights and biases used in ANN training. 
Gradient-descent BP has three drawbacks, though: (a) it can be 
challenging to identify appropriate ANN topologies; (b) the 
multifarious error planes that are produced have several local 
minima, causing the BP to fall into local minimum rather than a 
global minimum [54-57]. An additional issue with BP training 
is that, due to variations in the initial weight and bias values, as 
well as in the data partitioning into training, validation, and test 
sets, an ANN may produce a different answer every time it is 
trained. For the same input, various ANNs trained on the same 
issue may produce different results. A neural network requires 
at least three training sessions to ensure a high level of accuracy. 
Twelve training algorithms in MATLAB are based on various 
defining criteria used to train multilayer feedforward neural 
networks (MLFFNNs). The gradient or Jacobian method-based 
training techniques are accessible through MATLAB's Neural 
Network Toolbox software [58, 59]. 

2.2.3: Activation Functions  

Activation functions within a neural network play a pivotal 
role, imparting non-linear characteristics essential for the 
network to undertake complex tasks beyond linear operations. 
These functions determine the output of a neural network node 
or neuron by processing a collection of inputs and their 
associated weights. The network's ability to discern intricate 
patterns and correlations in data hinges significantly upon these 
activation functions [60]. The selection of an appropriate 
activation function has a profound impact on the efficacy and 
capabilities of the neural network's learning process. Previous 
research suggests that the choice of activation function between 
layers varies depending on how input parameters are processed 
and normalized, i.e., how they are integrated into the DNN [60]. 
In scenarios where identification and regression analysis 
problems necessitate normalizing input and output parameter 
values within the range of 0 to 1, the "log-sigmoid" function 
typically links the initial two layers (Input and hidden layers) of 
the DNN. In comparison, the "linear" activation function 
connects the last two layers (the last hidden and output layer) 
[61]. 

2.2.4: Structural Design of Neural Networks: Exploring 
Architectural Constructs 

The neural network comprises three fundamental 
components: the Input layer, hidden layers, and Output layer 
[62]. These layers consist of interconnected cells, known as 
artificial neurons, which emulate the functionality of biological 
neurons [63]. Fig. 2 provides a concise depiction of the neural 
network architecture, where inputs are denoted by In1-n, hidden 
layer neurons by HL1-21-n, and biases by B, along with their 
respective neuron counts. Facilitated by the collected data, 
neurons within the network receive inputs from the input layer, 
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undergo transformations within the hidden layers, and 
ultimately produce outputs in the output layer. Serving as 
conduits between layers, neurons are assigned weights, 
representing specific coefficients, which are then multiplied by 
input values. Subsequently, the resultant products are 
aggregated with bias values according to Equation 2. In 
Equation 2, the interplay between bias values and the activation 
function is highlighted as integral to the neural network's 
learning dynamics. Here, the output is determined by the 
activation function applied to the weighted sum of inputs, 
adjusted by the bias term "b." This process signifies the crucial 
role of bias in regulating the network's responsiveness to input 
signals. 

                         𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑ (𝑥𝑖 × 𝑤𝑖) + 𝑏)𝑛
𝑖=1                    (2) 

Each input 𝑥𝑖 is multiplied by its corresponding weight 𝑤𝑖, 
with the resulting products summed. The bias term, acting as an 
additional adjustable parameter, contributes to fine-tuning the 
network's responsiveness. This sum, along with the bias, is then 
processed through the activation function, which determines the 
neuron's output. This equation encapsulates the essence of 
neural network connectivity, illustrating how the network 
processes and integrates information across its layers. The 
operational procedures conducted within a neuron are also 
illustrated in Fig. 2. Specifically, Neuron HL2-1 is analyzed, 
elucidating the detailed processes of summation and the 
application of the activation function. 

 

III. DATA COLLECTION AND ANALYSIS: 

A database comprising 125 samples was collected from 
various studies [5, 64-69]. Some of these studies focused solely 
on the confinement of circular concrete columns, serving as 
control specimens to investigate the effects of confinement on 
columns in greater detail, particularly regarding input 
parameters such as corner radius and number of layers. During 
the database development process, 10 parameters were 
systematically recorded from each experimental program and 
subsequently utilized as inputs for the neural network. These 

parameters encompassed the diameter of columns (mm), column 
height (mm), concrete's initial compressive strength (MPa), 
steel's initial tensile strength (MPa), longitudinal reinforcement 
ratio (As/Ag, %), temperature of fire (°C), fire exposure time 
(Mins), number of layers of CFRP (Count), thickness of CFRP 
(mm), and tensile E-modulus of CFRP (GPa). Additionally, the 
axial load capacity (in kN) of the columns was recorded as the 
output variable for the proposed neural network. The collected 
samples from various experiments are presented 
comprehensively in Table 1. The data obtained from the 
literature was divided into three distinct subsets: training, 
validation, and testing. Seventy percent of the collected data was 
allocated for training the neural networks, while the remaining 
30% was divided equally into validation and testing subsets, 
each comprising 15% of the dataset. 

TABLE I. SAMPLE OF COLLECTED DATA FROM LITERATURE 
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200 1000 53 553 1.6 0 0 0 0 0 1439 

200 1000 53 553 1.6 0 0 0 0 0 1397 

200 1000 53 553 1.6 500 210 0 0 0 826 

200 1000 53 553 1.6 500 210 0 0 0 946 

200 1000 53 553 1.6 500 210 1 0.117 240 1356 

200 1000 53 553 1.6 500 210 1 0.37 230 1701 

200 1200 35 420 1.5 0 0 0 0 0 1353 

200 1200 35 420 1.5 0 0 0 0 0 1351 

200 1200 35 420 1.5 0 0 0 0 0 1355 

200 1200 35 420 1.5 300 230 0 0 0 1196 

200 1200 35 420 1.5 300 230 0 0 0 1198 

200 1200 35 420 1.5 300 230 1 0.117 230 2431 

200 1200 35 420 1.5 300 230 1 0.117 230 2436 

200 1200 35 420 1.5 600 400 0 0 0 972 

200 1200 35 420 1.5 600 400 0 0 0 977 

200 1200 35 420 1.5 600 400 1 0.117 230 2160 

200 1200 35 420 1.5 600 400 1 0.117 230 2163 

200 1200 35 420 1.5 900 600 0 0 0 709 

200 1200 35 420 1.5 900 600 0 0 0 713 

200 1200 35 420 1.5 900 600 1 0.117 230 1761 

200 1200 35 420 1.5 900 600 1 0.117 230 1765 

370 1000 50 500 1.6 0 0 0 0 0 3957 

 
To optimize the efficacy and performance of the training 

process for deep neural networks (DNNs), it is essential to 
normalize all variables contained within the database [60]. 
Following the training process, the output may be denormalized 
to facilitate comparative analysis. To mitigate challenges 
associated with low DNN learning rates [53], parameter values 
should be normalized within an acceptable upper and lower 
threshold range for each respective parameter. Thus, to refine 
the accuracy of estimations generated by the proposed NN 
model, all parameters extracted from the literature have been 
normalized between 0.9 and 0.2, considering variations in units. 
Equation 3 has been used to normalize variables pertinent to 
rectangular and square concrete columns. 

Y = (0.8/∆) × 𝑦 + (0.9 − (0.8/∆) ×)ymax  )         (3) 

Fig. 2.  Basic Architecture of Neural Network And inside processing of 

Neuron 



Salman et al. / Journal of Civil Engineering Frontiers Vol. 07, No. 01, pp. 01 –13, (2026) 

 

5 

In the normalization process, "y" represents the 
original value of the variable obtained from the developed 
dataset, while "Y" denotes the normalized value of the 
variable. The symbol "∆" signifies the difference between 
the maximum and minimum values of the variable. For 
instance, in the case of the Diameter of Columns variable, 
the minimum value (ymin) was determined to be 150 mm, 
and the maximum value (ymax) was 370 mm. After 
normalization, the lowest value was transformed to 0.1, 
and the highest value became 0.9.  Similarly, all other 
variables underwent normalization within the range of 0.1 
to 0.9 before being used as inputs for model training. 

3.1: Structure of Neural networks: 

The architecture of DNN models plays a critical role in 
shaping their predictive capabilities. Determining the 
appropriate activation functions to be employed between each 
layer, as well as the total number of neurons in each layer and 
the overall number of hidden layers in the network, is crucial. 
However, due to the lack of standardized guidelines, the 
architecture of DNNs is tailored to the specific characteristics of 
the subject matter and is refined through iterative 
experimentation. The variables associated with each of the NN 
structures investigated in the present study, aimed at identifying 
the most efficient architecture, are detailed in Fig. 3. 

 

 

 The study employed MATLAB to construct seven distinct 
models aimed at predicting the axial capacity of heat-damaged, 
CFRP-repaired circular concrete columns. Among these models, 
four utilized a single hidden layer (HL), while the remaining 
three featured double hidden layers. Activation functions were 
strategically chosen, with the sigmoid function employed 
between the input layer (IL) and the HL, as well as between the 
first and second HL. tanh function was applied between the 
output layer (OL) and last hidden layer (LHL). All of the models 
were trained for the number of epochs set, and this was set at 
300. 

One aspect of the backpropagation (BP) learning involved 
passing input values through the network and computing the 
difference between the output predicted and the target output 
from the training database. It employed a gradient-descent 
method for minimizing the error function, an inexpensive 
scheme to update weights and biases in neural network training 
in many scientific disciplines [62]. Thus, the LEARNGDM 
learning algorithm was applied in MATLAB for pre-training the 
DNNs in this study. Moreover, previous studies stressed that  

second-order learning algorithms should be employed for 
effective and efficient training. As such, the TRAINLM 
algorithm, which is a member of the Newton family employing 
the Levenberg-Marquardt (LM) algorithm, was employed as the 
Training Algorithm for all the DNN models developed in this 
study [55, 56]. 

All the models consisted of ten input variables, i.e., diameter 
of columns (mm), column height (mm), initial compressive 
strength of concrete (MPa), initial tensile strength of steel 
(MPa), longitudinal reinforcement ratio (As/Ag %), fire 
temperature (°C), fire exposure duration (minutes), layers of 
CFRP (Count), thickness of CFRP (mm), and tensile E-modulus 
of CFRP (GPa). The output of every model was the axial 
capacity of square and rectangular concrete columns 
rehabilitated with CFRP following exposure to fire. 

3.2: Analytical Approaches for Error Assessment: 

Furthermore, this study employs three additional statistical 
tools Root Mean Squared Error (RMSE), Mean Squared Error 
(MSE), and Mean Absolute Error (MAE) to assess the 
performance of the DNN models. The highest value of R and the 
lowest values of RMSE, MSE, and MAE indicate the most 
optimal model. Table. 2 shows the formulas used to calculate the 
correlation factor (R), RMSE, MSE, and MAE, respectively. 

TABLE II. DNN MODEL EVALUATION METRICS [70] 

Metric Definition Equation 

MAE 
Mean absolute 

error 
 

MAPE 
Mean absolute 

percentage error 
 

RMSE 
Root mean square 

error 
 

R2 Goodness of fit 

 

IV. MODEL ANALYSIS 

4.1 Multiple regression analysis 

Regression analysis typically requires a robust relationship 
between the independent and dependent variables. On the other 
hand, when there is a significant relationship between 
independent variables, referred to as "multicollinearity," it can 
cause issues with the analysis. There is no universally 
recommended or universally acknowledged method for 
resolving the problem of multicollinearity, as it is a result of the 

Fig. 3.  Structure of proposed DNN Models 
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inherent characteristics of the data. A multinomial model is 
created to forecast the axial capacity of a fire-damaged and 
CFRP-repaired circular column. In summary, the regression 
model can be described as follows: Table 3 presents the 
statistical parameters derived at the 95% confidence level, which 
is a regularly utilized level in statistical data analysis. 

The models' validity was evaluated based on several criteria, 
including the behavior of the correlation coefficient (R), the T-
test, the F-test, and the Durbin-Watson test. The statistical 
findings obtained for all models are presented in Table 3. The 
correlation coefficient for Model 1 is within an acceptable range, 
with an R value of 0.936. A high coefficient of regression does 
not necessarily reflect the superiority of the model. The validity 
of a model cannot be determined solely based on the value of R. 
The findings of a t-test, F-test, and Durbin–Watson test, were 
applied to verify consistency between the model and the 
experimental observations. Multiple regression analysis (MRA) 
was performed together with an analysis of variance (ANOVA) 
or the F-test. ANOVA was used to evaluate the importance of 
deviations from both linear and non-linear patterns in the 
established regression models. 

TABLE III. SUMMARY STATISTICS FOR THE MODEL OF MRA (AT THE 95% 

CONFIDENCE LEVEL) 
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(Constant) -2208 2.50 0.01 
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0
.0

0
0
 

2
.4

5
2
 

Column Dia (mm) 17.1 16.36 0.00 

Column Height (mm) -0.2 -0.65 0.51 

Initial Compressive 

Strength of Concrete 
35.0 7.83 0.00 

Initial Tensile 

Strength of steel 
-4.8 -2.12 0.03 

As/Ag 612.2 2.41 0.01 

Temperature at which 

heated 
-2.5 -3.90 0.00 

Fire Exposed 

Time 
2.8 2.45 0.01 

No of Layers of 

CFRP 
177 3.28 0.00 

Thickness of CFRP -179.5 -0.96 0.33 

Tensile Modulus of 

CFRP 
6.07 9.08 0.00 

 
In essence, it assisted in identifying whether the regression 

line was the best-suited curve to illustrate the link between the 
sample datasets of two correlated parameters. The null 
hypothesis, denoted as Ro = 0, states that there is no relationship 
between the two factors analyzed through ANOVA. The 
ANOVA model produced two outcomes: an F-statistic, which 
shows the extent to which the regression formula properly fits 
the dataset, and another statistic that reflects the significance 
level of the F-test. If the latter statistic was less than 0.05 at a 
95% confidence threshold, the null hypothesis of Ro = 0 was 
rejected. This demonstrates an association between axial 
capacity and the target predictor variable, which may be 

expressed through either a linear or non-linear formula with 95% 
reliability. Otherwise, it was assumed that the relationship could 
not be explained as a regression model. Since the F-statistics 
were less than 0.05, the null hypothesis was dismissed, 
confirming that the model is valid. 

The t-test was employed to evaluate the statistical relevance 
of the variables in each model, with a 95% confidence threshold. 
By considering the degrees of freedom linked with each 
parameter, a t-statistic derived from the experimental results can 
be compared to a critical value in reference tables. If the 
calculated t-statistic surpasses the tabled critical value, it implies 
that the parameter is statistically meaningful at a 95% 
confidence threshold, with a significance level below 0.05. 
Thus, the parameter is deemed significant to the model. The 
obtained p-value for the Column height variable is greater than 
0.05 (0.516), suggesting that column height exerts only a 
minimal effect on axial capacity after the rehabilitation of a fire-
damaged column using CFRP. 

The Durbin–Watson test was performed to check the degree 
of multicollinearity. Ideally, Durbin–Watson results should lie 
between 1.5 and 2.5. The Durbin–Watson value calculated for 
this model is 2.452, which satisfies this condition. Therefore, 
this model is not affected by any issues connected to 
multicollinearity. Fig.4 displays the axial capacity values 
estimated by the regression model, in comparison with the 
values observed in experimental tests. 

 

 

In every instance, the data points are evenly distributed 
around the r = 1 line, indicating that the models are both 
plausible and dependable for real-world use. The regression 
analysis reveals a significant connection between the calculated 
and anticipated values, as evidenced by the correlation factor (R) 
of 0.9357. This regression model can be used to forecast the 
axial capacity of a fire-damaged, repaired concrete column 
constrained by CFRP.  

Fig. 4.  Comparison of predicted and observed axial capacity for Regression 

Model 
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4.2 Analysis of DNN Models: 

In this study, the pursuit of the most accurate and optimal 
DNN model involved the development of seven distinct DNN 
models. Among these models, the selection criteria prioritized 
the identification of the model with the lowest values of RMSE, 
MSE, and MAE, while also considering the highest correlation 
factor (R). Initially, single-hidden-layer models were explored, 
with the number of neurons ranging from 6 to 12. Among these, 
the model with 10 neurons in the first hidden layer demonstrated 
the highest correlation factor (R). Subsequently, for models 
featuring 10 neurons in the first hidden layer, a second hidden 
layer was introduced, with the number of neurons varying from 
8 to 12. Among these two-layered models, it was observed that 
DNN6-10-10, characterized by 10 neurons in both the first and 
second hidden layers, exhibited the highest correlation factor (R) 
and the lowest values of RMSE, MSE, and MAE.   

Fig. 5 illustrates the correlation factors of various models, 
depicting four correlation factor values for each model: training 
correlation factor, validation R value, testing R value, and 
overall correlation factor of the model. It is discerned that MD 
1-6-00 exhibits the lowest R value for training, at 0.97689, 
whereas MD 6-10-10 demonstrates the highest R value for 
training, standing at 0.99926. In contrast, MD 1-6-00 displays 
the lowest R value for validation, with a magnitude of 0.98256, 
while MD 6-10-10 boasts the highest R value for validation at 
0.99805. Additionally, MD 8-10-08 registers the lowest R value 
for testing, at 0.97191, whereas MD 6-10-10 secures the highest 
R value for testing, with a value of 0.99748. Overall, it is evident 
that MD 6-10-10 boasts the highest overall correlation factor 
compared to all other models, standing at 0.99852. Conversely, 
MD 1-6-00 holds the lowest overall correlation factor value, at 
0.97937. 

 

In Fig. 5, the correlation factor (R) values of Training, 
Validation, Testing, and the overall R value for MD 6-10-10 are 
displayed. The correlation factors for training, validation, 
testing, and overall are determined to be 0.99926, 0.99805, 
0.99748, and 0.99852, respectively. While similar graphs were 
generated for all other models using MATLAB, MD 6-10-10 is 
highlighted here due to its proven optimality.  The visual 
representation of R values for MD 6-10-10 indicates a close 
alignment of the data distribution with the mean line, suggesting 
strong predictive performance. 

4.3 Essential Traits of the Perfect Model: 

MD 6-10-10 stands out as the most optimal model, 
characterized by the highest overall correlation factor (R) of 
0.99852 and the lowest values of RMSE, MSE, and MAE. MD 
6-10-10 is a double-hidden layered neural model, featuring 10 
neurons in the first hidden layer and an additional 10 neurons in 
the second hidden layer. The general architecture of MD 6-10-
10 is depicted in Fig. 6. 

 

 

V. RESULTS AND DISCUSSION  

It is crucial to visually assess the predictive behavior of the 
model in comparison to the original experimental data collected. 
Fig. 7 depicts the variation of the predicted axial load capacity 
by the MD 6-10-10 model and the regression Model relative to 
the axial load capacity obtained from prior experimental 
investigations. The analysis reveals that the model's predictions 
closely align with the original values documented in the 
literature. Subsequent sections will delve into a more detailed 
examination of these findings. 

Fig. 8 shows the overall correlation factor (R), RMSE, MSE, 
and MAE of all eight models developed in the present 
investigation. From Fig. 8, it is clear that with MD6-10-10 
exhibiting the highest overall correlation factor of 0.99852, the 
Figure also displays the Root Mean Square Error (RMSE) of all 
models, where MD6-10-10 shows the lowest overall RMSE 
value of 0.0580, and MD1-6-00 has the highest RMSE value 
among all other models at 0.415. The Mean Square Error (MSE) 

Fig. 5.  Training, Validation, Testing and Overall Correlation Factor for DNN 

Models and optimized MD 6-10-10 

Fig. 6.  Architecture of MD 6-10-10 



Salman et al. / Journal of Civil Engineering Frontiers Vol. 07, No. 01, pp. 01 –13, (2026) 

 

8 

of all models is presented, with MD6-10-10 once again having 
the lowest overall MSE value of 0.00337, and MD1-6-00 
exhibiting the highest MSE value of 0.1726.  

 

Similarly, MD6-10-10 has the lowest value of Mean 
Absolute Error (MAE) among all the models. Finally, the 
comparison between the optimum DNN Model and the 
regression Model has also been done. 

 

 

5.1 Assessing Prediction Capabilities of Regression and DNN 

Models 

Table IV shows percentage errors between test results and 
predictions of the Deep Neural Network (DNN) model and the 
regression model in the selected studies [5, 65–67]. The table 
gives an overview of prediction accuracy, outlining the strengths 
and weaknesses of each model in approximating the axial 
capacity of fire-damaged concrete columns repaired with 
Carbon Fiber Reinforced Polymer (CFRP). The percentage error 
of each experimental value was calculated between the value 
and the corresponding predictions of both approaches as a direct 
reflection of model performance. 

The comparison of four studies—Yaqub et al. (2010), 
Hussain et al. (2022), Jia Xu et al. (2022), and Al Nimry et al. 

(2016)—yields useful data regarding predictive performances of 
the two models. In Yaqub et al. (2010), the DNN model 
outperformed the regression model across the board with lower 
percentage errors. Similar outcomes were observed in research 
conducted by Hussain et al. (2022) and Jia Xu et al. (2022), 
where experimental values were better followed by DNN 
predictions. Again, comparison with Al Nimry et al. (2016) 
again validated the improved performance of the DNN model 
over regression analysis. 

Despite variations in experimental conditions between the 
selected studies, the DNN approach consistently yielded more 
precise results. This proves its robustness and adaptability in 
predicting the axial capacity of fire-damaged, CFRP-repaired 
concrete columns under different conditions. Overall, these 
findings emphasize the potential of advanced machine learning 
methods namely DNNs in structural engineering. By 
representing complex relationships in the data, DNN models 
create more precise predictions, which can allow for better 
decision-making and aid design methods for fire-damaged 
structural members. 

TABLE IV. ERRORS BETWEEN PREDICTED AND EXPERIMENTAL VALUES OF 

BOTH DNN AND REGRESSION MODEL 

Comparison With Experimental Study by Yaqub  et al.,2010 [5] 

Experimental 

Value 

Predicted 

Value by 

NN model           

Predicted Value 

by    Regression 

Model   

NN Model 

Error (%) 

Regression 

Model Error 

(%) 

1439 1422.26 1172.92 1.16 18.49 

1397 1422.26 1172.92 1.81 16.04 

826 880.66 497.74 6.62 39.74 

946 880.66 497.74 6.91 47.39 

1356 1358.32 2109.72 0.17 55.58 

1701 1707.92 2003.64 0.41 17.79 

Comparison With Experimental Study by Xu et al.,2022 [66] 

Experimental 

Value 

Predicted 

Value by 

NN model           

Predicted Value 

by    Regression 

Model   

NN Model 

Error (%) 

Regression 

Model Error 

(%) 

3957 3959.50 4226.29 0.06 6.81 

4438 4436.91 4751.41 0.02 7.06 

6213 5912.24 5626.59 4.84 9.44 

4727 4728.44 5829.30 0.03 23.32 

6068 6384.10 6006.28 5.21 1.02 

4499 4728.44 5829.30 5.10 29.57 

Comparison With Experimental Study by Hussain et al.,2022  [65] 

Experimental 

Value 

Predicted 

Value by 

NN model           

Predicted Value 

by    Regression 

Model   

NN Model 

Error (%) 

Regression 

Model Error 

(%) 

1353 1351.50 1083.31 0.11 19.93 

1351 1351.50 1083.31 0.04 19.81 

1355 1351.50 1083.31 0.26 20.05 

1196 1200.95 966.94 0.41 19.15 

1198 1200.95 966.94 0.25 19.29 

2431 2428.68 2518.26 0.10 3.59 

Comparison With Experimental Study by Al-Nimry et al.,2016 [67] 

Experimental 

Value 

Predicted 

Value by 

NN model           

Predicted Value 

by    Regression 

Model   

NN Model 

Error (%) 

Regression 

Model Error 

(%) 

988 983.42 1028.18 0.46 4.07 

990 983.42 1028.18 0.66 3.86 

534 542.11 103.13 1.52 80.69 

536 542.11 103.13 1.14 80.76 

457 449.45 269.71 1.65 40.98 

459 449.45 269.71 2.08 41.24 

 

Fig. 7.  Comparison between MD 6-10-10 And regression Model predictions 

and Data collected from Literature review 

Fig. 8.  Statistics of Errors in prediction of axial capacity by proposed models 
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Furthermore, the comprehensive examination of the deep 
neural network (DNN) and regression models in various 
research highlights the wider range of uses and the higher 
performance of the DNN. 

DNN model utilizes advanced machine learning techniques, 
that is, Multilayer Feedforward Neural Networks (MLFNNs), to 
effectively learn from data and tune its predictions for different 
experimental conditions. This leads to more robust and accurate 
results. Generally, the analyses made in the paper highlight the 
relevance of adding the latest machine learning techniques, that 
is, deep neural network (DNN) models, to the field of structural 
engineering research and application. These techniques offer a 
possible means of enhancing the accuracy of prediction and 
aiding smart decision-making in structural system design and 
structural system assessment. Figure 9 shows the graphical 
Representation of the prediction by the DNN and the prediction 
by the regression model and the comparison with experimental 
result. 

 

5.2 Analysis Of Effect Of Predictors On Final Axial Capacity 

Fig.10 describes the effect of both fire temperature and 
duration of fire on the axial capacity of circular columns 
rehabilitated with Carbon Fiber Reinforced Polymer (CFRP) 
following fire damage. There is a definite reduction in the axial 
capacity with the increase in exposure time and fire temperature, 
as the trend suggests. This is consistent with the expected 
performance of structures that have been damaged by fires. 
Long-duration heating deteriorates strength and stability as the 
structural members increasingly lose their ability to sustain axial 
loads. Furthermore, rising fire temperatures increase this 
deterioration further lowering the column's integrity. Thus, the 
lowest axial capacity is observed when temperature and duration 
of fire are at their highest values. This trend further advocates 
for the importance of incorporating fire effects into structural 

element design and assessment, particularly in CFRP-
strengthened concrete columns. An understanding of column 
behavior under fire exposure is essential to ensure they are safe 
and trustworthy in real-world conditions. Lastly, results from 
Fig. 10 can be employed towards the development of design 
considerations and guidelines for improving structural system 
fire resistance as well as overall performance under fire-exposed 
environments. 

 

 

Fig. 11 illustrates the correlation between the quantity of 
Carbon Fiber Reinforced Polymer (CFRP) layers and the fire 
temperature on the axial capacity of fire-damaged circular 
columns that have been restored using CFRP. The illustrated 
pattern demonstrates that the axial capacity rises as the number 
of CFRP layers increases, whereas it decreases as the fire 
temperature rises. The increase in axial capacity resulting from 
the addition of more CFRP layers aligns with the strengthening 
impact of CFRP materials on columns damaged by fire. Extra 
layers of CFRP strengthen the structural reinforcement, hence 
boosting the overall load-carrying capability of the columns. 
This event highlights the efficacy of CFRP as a reinforcement 
material in mitigating the adverse effects of fire-induced damage 
on structural integrity.      

On the other hand, the reduction in the ability to bear weight 
along the axis as fire temperatures increase emphasizes the 
harmful effect of high thermal conditions on the strength and 
stability of the structure. As the temperature of the fire rises, the 
mechanical characteristics of both the concrete and CFRP 
materials deteriorate, resulting in a decrease in the structural 
integrity. Therefore, the axial capacity is at its lowest when there 
are no CFRP layers and the fire temperature is at its highest, 
indicating the most extreme conditions for structural 
performance.  Figure 11's insights highlight the importance of 
considering the quantity of CFRP layers and fire temperature 
when designing and evaluating fire-damaged structures repaired 
with CFRP. Engineers can enhance the fire resistance and 
resilience of structural systems by understanding the interaction 
between these components. This understanding allows them to 
optimize strengthening measures, ensuring the safety and 
longevity of the systems in fire-prone areas. 

Fig. 12 illustrates an examination of how the quantity of 
Carbon Fiber Reinforced Polymer (CFRP) layers and the 
temperature of fire exposure affect the axial capacity of circular 

Fig. 9.  DNN and Regression Model Prediction Comparison with Experimental 

Studies by (a) Yaqub et al.,2010 [5] (b) Hussain et al.,2022 [65] (c) Xu et 

al.,2022 [66] (d) Al-Nimry et al.,2016 [67] 

Fig. 9a Fig. 9b 

Fig. 9c 

Fig. 10.  Effect of Fire Exposed Time and Fire Temperature on Axial strength 

of Fire damaged, CFRP repaired Circular Columns 

Fig. 9d 
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columns that have been restored with CFRP after being damaged 
by fire. The trends shown indicate a direct relationship between 
the number of CFRP layers and axial capacity, while a reverse 
relationship is detected between fire exposure time and axial 
capacity. 

 

Moreover, Fig. 12 clearly illustrates that the highest axial 
capacity is achieved when two layers of CFRP are used, with no 
fire exposure. This discovery highlights the synergistic effect of 
CFRP reinforcement and the absence of fire-induced damage, 
resulting in exceptional structural performance.  The 
significance of Fig. 12 lies in its ability to emphasize the 
necessity of thoroughly evaluating the quantity of CFRP layers 
and the duration of fire exposure when designing and restoring 
structures damaged by fire. Engineers can enhance the fire 
resistance and resilience of structural systems in fire-prone 
situations by deliberately optimizing these parameters. This 
ensures the safety and longevity of the systems. 

VI. CONCLUSION 

The performance assessment of the tested Artificial Neural 
Network (ANN) models in forecasting the axial capacity of fire-

damaged columns repaired with Carbon Fiber Reinforced 
Polymer (CFRP) has proven their superiority over Multiple 
Regression Analysis (MRA), as evidenced by comparisons of 
various performance indices. The results highlight the efficacy 
of ANN models in accurately forecasting axial capacity, 
particularly when compared to empirical data from multiple 
studies. Nevertheless, it is acknowledged that the artificial 
neural network (ANN) method would be advantageous if a more 
extensive and varied training set were created to augment its 
predictive skills further. After conducting a thorough analysis 
using ANN and MRA techniques the following conclusion can 
be drawn: 

• MD 6-10-10 stands out as the most optimal model, 

characterized by the highest overall correlation factor (R) of 

0.99852 and the lowest values of RMSE, MSE, and MAE 

with RMSE (%) = 0.058, MSE (%) =0.0033 and MAE (%) 

=3.38. MD 6-10-10 is a double hidden layered neural model, 

featuring 10 neurons in the first hidden layer and an 

additional 10 neurons in the second hidden layer. 

• The ANN models, especially MD6-10-10, accurately 

predicted the axial capacity when compared to Experimental 

data from various studies. This highlights the potential of 

ANN models in aiding the design process for repairing fire-

damaged Circular concrete columns with CFRP composites. 

• During the comparative study of Predicted Results with the 

original experimental studies conducted in the literature. It 

is established that the proposed DNN model gives accurate 

results with an absolute error as low as 0.02%. Hence the 

developed model can be used during the design process of 

repairing fire damaged Circular concrete columns with 

CFRP composites. 

• While MRA is simple and does not require sophisticated 

software, it may not accurately represent nonlinear 

relationships in the data. ANN models, on the other hand, 

are highly effective in capturing complex and nonlinear 

functional connections. Despite requiring sophisticated 

computations and extensive training data, ANN models 

offer superior predictive accuracy and flexibility with low 

error percentage of 0.02% 

• The predictions indicated that the number of CFRP layers 

significantly influences the restored axial strength of fire-

damaged columns. Two Number of CFRP layers result in 

up to 83% increase in axial strength. 

• The duration and temperature of the fire are critical factors 

affecting the repaired axial strength. Higher fire duration 

and temperature result in lower repaired axial strength. 

These findings underscore the dependability and suitability 
of the developed ANN models, particularly the MD6-10-10 
model, in assisting the design process of restoring fire-damaged 
columns using CFRP composites. The insights gained from this 
study provide valuable guidance for engineers to enhance repair 
strategies and ensure the safety and resilience of structures in 
fire-prone environments. 

Fig. 11.  Effect of No of CFRP layers and Fire Temperature on Axial strength 

of Fire damaged, CFRP repaired Circular Columns 

Fig. 12.  Effect of No of CFRP layers and Fire Exposed Temperature on Axial 

strength of Fire damaged, CFRP repaired Circular Columns 
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