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Abstract

Thin rectangular plates are widely used in civil, mechanical, and aeronautical engineering, where accurate prediction of buckling
behaviour is critical for structural reliability. While most classical analyses focus on small-deflection conditions, such approaches neglect
the nonlinear effects induced by large out-of-plane displacements. This study aims to apply the new general mathematical model for
biaxial buckling of thin isotropic plate with large deflection to formulate new specific equations for six plate boundary conditions. The
nonlinear buckling behaviour is investigated for plates with boundary conditions CCCC (clamped - clamped - clamped - clamped), CSSS
(clamped - simply supported - simply supported - simply supported), CSCS (clamped - simply supported - clamped - simply supported),
CCSS (clamped - clamped - simply supported - simply supported), CCCS (clamped - clamped - clamped - simply supported) and SSSS
(simply supported all-round)) subjected to biaxial compressive loads. The new specific equations of this work allow for the evaluation of
buckling load coefficients across varying aspect ratios, biaxial buckling ratios (n), and deflection-to-thickness ratios (w/t). The results
obtained reveal that the biaxial buckling load coefficient (and load) decreases with increasing ‘n’ but increases with increase in w/t. This
highlights the combined influence of loading distribution and geometric nonlinearity. Deducing from the new biaxial equations for
uniaxial loading case for the purpose of comparison in square plates, the large-deflection buckling coefficients compared, showed
negligible deviation (~0%) from prior works, validating the proposed equations’ accuracy. Comparative analysis on values of buckling
and postbuckling loads of CCCS plates against existing work under biaxial loading shows percentage differences between 0% and 5.56%,
with the present results consistently upper bound but within acceptable engineering tolerances. The further comparison of biaxial
buckling and posbuckling load coefficients of SSSS plate with existing works has shown also, the adequacy of this new model. The findings
demonstrate that the proposed linear and nonlinear buckling equations not only aligns with established studies but also offers enhanced
predictive capability for large deflection analysis of thin isotropic rectangular plates.
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significant, and the plate’s stiffness, stability, and load-carrying
capacity may be considerably affected, necessitating advanced
Thin plates are widely utilized across various engineering  analytical or numerical methods for accurate modelling and safe
disciplines, including civil, mechanical, and aeronautical  design [6]. When the deflection of a thin plate becomes
engineering, due to their structural efficiency, versatility, and  comparable to its thickness, the structural response transit from
ability to carry significant loads relative to their weight [1]. In  a linear to a nonlinear regime [7]. In this state, the assumptions
many applications, these plates are subjected to in-plane  underlying the classical Kirchhoff plate theory, particularly the
compressive forces arising from structural loads, thermal  neglect of in-plane stretching of the plate’s middle surface, are
stresses, or aerodynamic pressures [2]. Such compressive forces  no longer valid [8].
induce deflections in the plate, which, under small load
magnitudes, may remain within the elastic range and cause only
minor displacements [3], [4]. However, with the continuous or
progresswe application of compressive loads, these deflections
can increase substantially, leading to large displacement
behaviour [5]. At this stage, nonlinear geometric effects become

I. INTRODUCTION

The deformation induces significant membrane stresses in
the middle surface, which interact with bending effects, thereby
altering the overall stiffness and load distribution of the plate [9].
To accurately capture this nonlinear behaviour, the analysis
must account for both bending and stretching actions, leading to
the development of more complex governing, egyatlons [10],
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[11], [12]. A foundational contribution in this regard was made
by Von Karman in 1910, who formulated a set of nonlinear plate
equations based on Airy’s stress functions [13], [14]. While
these equations provide a rigorous theoretical framework for
modelling large deflections, their coupled and highly nonlinear
nature makes manual computation extremely tedious, often
necessitating numerical methods or computational techniques
for practical applications. Over the years, numerous scholars
[15], [16], [17] have investigated the buckling behaviour of
rectangular thin plates under small deflections for both uniaxial
and biaxial loading conditions, employing a variety of analytical
and approximate techniques. Among these, the Galerkin method
and the Ritz method, both rooted in the principles of energy
methods, have been widely recognized for their effectiveness in
predicting buckling loads and modes for such structural
elements [18], [19], [20]. These approaches leverage variational
formulations to provide accurate and computationally efficient
solutions for plates subjected to different loading scenarios and
boundary configurations. On large deflection analysis, Levy
[21] made a great classical attempt in solving the von Karman
large deflection equations using assumed trigonometric shape
function for a plate simply supported all-round (SSSS) only
subjected to uniaxial in-plane loads. His work provided the first
basic solution approach and numerical values for further
research validation.

Recent works on large deflection of thin plates had been
carried out by some scholars among them is [22] who carried out
a direct integration of the two von Karman large deflection
equations for a uniaxially loaded thin plates. He employed the
polynomial displacement shape function to obtain the solution
to the buckling and post buckling problem of thin plates.
However, this great attempt was still based directly on the von
Karman 4% order partial differential equations with the
involvement of Airy’s stress functions and with serious
computational complexities especially for manual computation.
To avert the continuous dependence on the von Karman 1910
equation of large deflection with it accompanied difficulties,
[16], [23] formulated an improved alternative mathematical
model for large deflection analysis of thin isotropic plates
subjected to uniaxial buckling completely devoid of the Airy’s
stress function in particular and von Karman equations in
general. This equation has been applied to a wide range of
boundary conditions using both the trigonometric and
polynomial displacement shape functions with very high degree
of accuracy. Itis clear that there is no simple equation for biaxial
buckling analysis of thin plates with large deflection for these
boundary conditions. Hence, building upon this body of
knowledge and effort, [24] in his master’s thesis submitted to the
department of civil engineering, university of Cross River,
extended the works of [23] to biaxial buckling by formulating a
general equation (Equation 2.5) for analysis of thin isotropic
plates with large deflection.

The present study aimed to apply this general equation to
formulate new specific equations for six boundary conditions of
thin plates, and evaluating the buckling characteristics of thin
rectangular plates subjected to biaxial compressive forces under
large deflection. This would be done by choosing suitable
polynomial shape functions and evaluating the bending,
membrane and geometric stiffness of the six plates considered.
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And using the general equation to obtain the new specific
equation for each plate under consideration. Remember, unlike
small-deflection analyses where material and geometric
nonlinearities are negligible, this work incorporates the
influence of membrane forces that develop in the plate’s middle
surface as a direct consequence of significant out-of-plane
displacements.

The investigation considers a range of boundary conditions,
including CCCC (clamped - clamped - clamped - clamped),
CSSS (clamped - simply supported - simply supported - simply
supported), CSCS (clamped - simply supported - clamped -
simply supported), CCSS (clamped - clamped - simply
supported - simply supported), CCCS (clamped - clamped -
clamped - simply supported), and SSSS (Simply supported at
four edges), to comprehensively assess how this general
equation is suitable for plate stability analysis and assess how
edge restraints influence the plate’s buckling and postbuckling
response. This analysis provides deeper insight into the interplay
between boundary conditions, large deflection effects, and
biaxial loading, thereby extending the applicability of existing
buckling theories to more realistic engineering scenarios. The
outcome of this work will provide relevant information on the
suitability of the new model, present new simple specific
mathematical models, provide relevant numerical data for
research and design, and deepen understanding of thin
rectangular isotropic plates subjected to biaxial in-plane loading.
These contributions will improve design safety and avert
economic waste.

THE TOTAL POTENTIAL ENERGY FUNCTIONAL FOR A
RECTANGULAR PLATE UNDER BIAXIAL IN-PLANE LOADING

1.

The Ritz total potential energy functional, II of thin
rectangular plates under large displacement subjected to uniaxial

in-plane loading as given by [23] i

J f | ax2 66:;;) +<6;7V2V> ldxdy 2
L6 =G G

+(aa ) ]dxdy
ff (5 dxdy )

For plate with biaxial in-plane loading, [24] modified (1) to (2)
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Where:
w = Out of Plane Displacement; D = Flexural rigidity of the
plate; N, = In-plane force along the x — axis, N, =
Inplane force along the y — axis.

b Et3 12 Et
T12(1-v2)' BT 12
= gD; (3a,b,¢)

Using the non-dimensional parameter,

x=aR; y=bQ; for0<R<1and0<Q<
1 4)

This equation incorporates both geometric and material
nonlinearities.

From (2), Edubi [24] formulated a new general biaxial
buckling equation for thin rectangular plate with large
displacement as given in (5)

2

3 1 w
y [Ror+ S () ] o :
x = Ky = )
[KNX + 7]

Where hy,, is the value of the shape profile at point of
maximum deflection.

n is the load factor given as

Ny
= = (6)
1
Kpr = Kpx + 22 Kpxy + 24 Kpy (7)
2 k
Kt = Kmx + Z_ZKme + % ®

ky,t = Total bending stiffness
Kkt = Total membrane stiffness
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kpx = Bending stiffness along x — axis given as

1 1752 2
e = f f (W) dRdQ ©)

kpxy = Bending stiffness along xy — axis given as

1,1 azh
kbxy = f f <
0 Yo

2
ey Q) dRdQ (10)

py = Bending stiffness along y — axis given as

1 r1/52h\?

Kmx = Membrane stiffness along x — axis given as

= [ [ (G ma a2

Kmxy = Membrane stiffness along xy — axis given as

Kmxy f f (13)

k

deQ

Kmy = Membrane stlffness along y — axis given as
1 ,1 4

Ky = (—) R 14

m=] | (55) e (14)

knx = Geometric stiffness along x — axis given as

Ky = fol fol (%)2 dRdQ (15)

Knxy = Geometric stiffness along Xy — axis given as

Koy = f f (16)

y = Geometric stlffness along y — axis given as

Kny = fo ' fo ' (g—g)z dRdQ (17)

R = Non dimensional parameter along x — direction

deQ
ky

Q = Non dimensional parameter along x — direction

h = the shape profile of the plate
2 =— istheaspect ratio (18)
From (5),
K431 (w)z K
B bT 2 (hmax)z t mT | D 19
e Ky =z (19

|

This is the coefficient of biaxial buckling load for thin
rectangular plates under large displacement.

[KNX t—z

Hence, (5) becomes

Ny = rlea_z (20)
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Determining the Stiffnesses for the Rectangular Plate in this
study

The governing differential equation of a plate is given by
[13] as

2w\’ 92w \* 92w\’
(@) ”<—axay) *(v)

In an attempt for find solution to (21), [25], [26] carried out
a direct integration of the governing partial differential equation
of a plate in Equation (21) to obtain the general deflected shape
function, w, of a rectangular plate in a compacted series form as

m=0n=0

q

p @D

(22)

Equation (22) is a power series equation where o, and B,
are constants of the series; R and Q are nondimensional
parameters along x- and y- axes respectively; and m and n are
the powers of the series along x- and y-axes respectively. They
expressed the series equation in (22) in an expanded form as a
truncated power series equation given in (23) as

w = (ap + ;R + a,R? + a3R® + a,RM) (By + B1Q + B2 Q?
+B5Q% +B4QY) (23)

To determine the constants a and [, [26] applied the
boundary conditions to a rectangular plate using (2.23) to obtain
the polynomial deflected shape function for the plate types
considered in this work as given in Table 1. These polynomial
shape functions satisfy the geometric condition along the edge

To determine the stiffness of each of these plate types
considered here, these polynomial deflected shape function
given in Table 1 for the CCCC, CSSS, CSCS, CCSS, CCCS and
SSSS plates types were used. The stiffnesses for CCCC, CSSS,
CSCS, CCSS, CCCS and SSSS were calculated using (9) to (17)
by substituting their specific shape profile as given in Table 1,
and the results obtained are presented in Tables 2-4.

Substituting the stiffness values in Tables 2 into (7) and (8)
yields the total bending stiffness and membrane stiffness
expression for the various boundary conditions under
consideration.

Evaluating the maximum value of h for all the boundary
conditions

The point of maximum deflection of these plates is at the
middle of the plate for all boundary conditions considered, and
this corresponds to R = Q = 0.5. Hence, substituting this value
of R and Q into each profile in Table 1 and evaluating yields the
results presented in Table 5.

The New Specific Equations

In order to obtain the specific equation for each plate type
considered, the stiffness values in Tables 2-4 and the hyax values
in Table 5 for each plate boundary condition were substituted
into (5) to get the new specific biaxial buckling equation of the
respective rectangular plates under large deflection as shown in
Table 6.

III. RESULTS

The results obtained from section 2 are presented in Tables
2-6.

TABLE 2: SUMMARY OF BENDING STIFFNESS VALUES

by having zero deflection at all the edges. Also, these deflected PLATE K. Koy Ko,
shape functions are very simple and easy to differentiate and TYPE
integrate compared to the assumed trigonometric shape cccce 0.0012698413 0.0003628118 0.0012698413
functions or Fourier series functlops used by previous authors. CSSS 0.0361904762 0.0416326531 0.0885714286
Moreso, the results obtained with these polynomial shape
functions for previous works on bending, buckling and vibration Cscs 0.0076190476 0.0092517007 0.0393650794
analyses of rectangular plates with small and large deflections CCSS 0.0135714286 0.0073469388 0.0135714286
[27], [28], [29], [30], [31], [16] were very adequate. cces 0.0028571429 | 0.0016326531 | 0.0060317460
TABLE 1: THE POLYNOMIAL DISPLACEMENT SHAPE PROFILE, H. SOURCE: SSSS 0.2361904762 0.2359183673 0.2361904762
[26]
Deflected Shape Function, w =Ah
Plate Type TABLE 3: SUMMARY OF MEMBRANE STIFFNESS VALUES
h
PLATE
ccee (R? — 2R® + R*)(Q% — 2Q° + Q%) TYPE Kons Koy Koy
CSSS (R = 2R® + R)(1.5Q2 — 2.5Q° + Q%) ccee 0.0000000024 0.0000000005 0.0000000024
CSCs (R = 2R® + R¥)(Q? — 20% + Q%) CSSS 0.0000340978 0.0000045749 0.0000449254
CSCS 0.0000016447 0.0000002610 0.0000019245
CCSsS (1.5R% — 2.5R? + R*)(1.502 — 2.5Q% + Q%)
CCSS 0.0000011786 0.0000001515 0.0000011786
cees (15R* = 2.5R° + R)(Q* - 20° + QY cces 0.0000000568 | 0.0000000086 | 0.0000000505
SSSS (R—2R*+R")(Q—-2Q%+Qh SSSS 0.0012997694 0.0001381780 0.0012997694
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TABLE 4: SUMMARY OF GEOMETRIC LOAD STIFFNESS VALUES

S/N P,II,J‘?PTEE Ky Ky
1 CCCC 0.0000302343 0.0000302343
2 CSSS 0.0036621315 0.0042176871
3 CSCS 0.0007709751 0.0009372638
4 CCSS 0.0006462585 0.0006462585
5 CCCS 0.0001360544 0.0001436130
6 SSSS 0.0239002268 0.0239002268

TABLE 5: VALUES OF THE MAXIMUM SHAPE PROFILE, HMAX AT (R=Q =0.5)

BCs CCcCC CSSS CSCS CCSS CCCS

0.00390625| 0.0390625| 0.01953125| 0.015625| 0.0078125

hmax

TABLE 6: NEW BIAXIAL BUCKLING LOAD EQUATION UNDER LARGE DEFLECTION

FOR RECTANGULAR PLATES IN THIS STUDY (IE BUCKLING AND POSTBUCKLING

EQUATIONS)
D [Kb"r+;h712(¥)zkm-r] o
PLATE TYPE Biaxial Buckling Load Equation, Ny = njx— = W L
Nx 22
2
[(0.0012698413 + 0'000722256236 + 0'00122398413) + () (0.0002393913 + 0-000029268965 N 0.0002;93913)]
- 00000302343 i
[0.0000302343 + $00003923430] -
2
[(0-0361904762 N 0.083226253062 0.088527414286) + (9 (00335195010 + 0.008929247035 0.04412334636)]
CSss 5
[0.0036621315 + 0-0042;‘&] -
2
[(0.0076190476 + 0'018520234014 + 0'03932i50794) + (1) (00064671561 + 0-002025;22675 N 0.00752275011)] D
CSCS
[0.0007709751 + 0-00092&] S
2
[(0'0135714286 * 0'014629238776 0'01352114286) +() (0.0072410777 + 0'001%6212889 n 0-00722310777)]
ccss N
2
[0.0006462585 + 0-0006‘2*&] :
2
[(0-0028571429 + 0-003226253062 + 0.00602?;17460) N (¥) (0.0013970727 N 0.000422246791 0.0012;07737)] 5
cccs N
2
[0.0001360544 + 0-0001‘2*&] -
2
[(0.2361904762 + 0-47182?;67346 N 0.23612204762) +() (02044360431 + 0-043426270247 N 0.20442360431)]
Ssss "
2
|0.0239002268 + $0232902268n) -

Using the derived equations or mathematical models in
Table 6, the biaxial buckling load coefficients for rectangular
plates under large deflection for various boundary conditions
can be evaluated for various aspect ratios and biaxial buckling
ratios.

For instance, considering a square plate for each of these
boundary conditions with a biaxial buckling load ratio, n,
ranging from 0O to 1.0 at intervals of 0.1, and a deflection-to-
thickness ratio, w/t, ranging from 0 to 1.0 at intervals of 0.1, we
have the numerical values of the coefficient of biaxial buckling
load under large displacement as presented in Tables 7 to 12.

TABLE 7: BIAXIAL BUCKLING LOAD COEFFICIENT FOR CCCC PLATE WITH ASPECT RATIO OF 1.0

M
> 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 108.000 98.182 90.000 83.077 | 77.143 | 72000 | 67.500 | 63.529 | 60.000 | 56.842 | 54.000
0.1 108.190 98.355 90.159 83223 | 77279 | 72127 | 67619 | 63.641 | 60.106 | 56942 | 54.095
0.2 108.762 98.874 90.635 83.663 | 77.687 | 72508 | 67976 | 63977 | 60423 | 57243 | 54381
0.3 109.714 99.740 91.428 84395 | 78367 | 73.142 | 68571 | 64537 | 60952 | 57744 | 54857
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0.4 111.047 100.951 92.539 85.420 79.319 74.031 69.404 65.322 61.693 58.446 55.523
0.5 112.760 102.509 93.967 86.739 80.543 75.173 70.475 66.330 62.645 59.347 56.380
0.6 114.855 104.413 95.712 88.350 82.039 76.570 71.784 67.562 63.808 60.450 57.427
0.7 117.330 106.664 97.775 90.254 83.807 78.220 73.331 69.018 65.183 61.753 58.665
0.8 120.186 109.260 100.155 92.451 85.847 80.124 75.116 70.698 66.770 63.256 60.093
0.9 123.423 112.203 102.852 94.941 88.159 82.282 77.139 72.602 68.568 64.959 61.711
1 127.041 115.492 105.867 97.724 90.743 84.694 79.400 74.730 70.578 66.864 63.520
TABLE 8: BIAXIAL BUCKLING LOAD COEFFICIENT FOR CSSS PLATE WITH ASPECT RATIO OF 1.0
Npx

W 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 56.805 50.938 46.170 42.218 38.889 36.047 33.592 31.450 29.565 27.893 26.400
0.1 57.042 51.151 46.362 42.394 39.051 36.197 33.732 31.581 29.688 28.009 26.510
0.2 57.752 51.787 46.940 42.922 39.538 36.648 34.152 31.974 30.058 28.358 26.840
0.3 58.935 52.849 47.901 43.801 40.348 37.399 34.852 32.629 30.674 28.939 27.390
0.4 60.592 54.334 49.248 45.033 41.482 38.450 35.832 33.547 31.536 29.753 28.160
0.5 62.722 56.244 50.979 46.616 42.940 39.802 37.091 34.726 32.645 30.798 29.150
0.6 65.326 58.579 53.096 48.551 44.723 41.454 38.631 36.168 34.000 32.077 30.360
0.7 68.403 61.338 55.596 50.838 46.829 43.407 40.450 37.871 35.601 33.588 31.790
0.8 71.953 64.522 58.482 53.476 49.260 45.660 42.550 39.837 37.449 35.331 33.440
0.9 75.977 68.130 61.752 56.467 52.014 48.213 44.929 42.064 39.543 37.307 35.310
1 80.474 72.163 65.408 59.809 55.093 51.067 47.589 44.554 41.884 39.515 37.400

TABLE 9: BIAXIAL BUCKLING LOAD COEFFICIENT FOR CSCS PLATE WITH ASPECT RATIO OF 1.0
Npx

> " 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 84.941 75.734 68.328 62.241 57.150 52.829 49.116 45.890 43.062 40.562 38.336
0.1 85.150 75.920 68.496 62.394 57.291 52.959 49.236 46.003 43.167 40.661 38.430
0.2 85.776 76.478 68.999 62.853 57.712 53.348 49.598 46.341 43.485 40.960 38.713
0.3 86.819 77.409 69.839 63.617 58.414 53.997 50.202 46.904 44.014 41.459 39.184
0.4 88.280 78.711 71.014 64.688 59.397 54.906 51.046 47.693 44.754 42.156 39.843
0.5 90.158 80.385 72.524 66.064 60.660 56.074 52.132 48.708 45.706 43.053 40.691
0.6 92.453 82.432 74.371 67.746 62.204 57.501 53.459 49.948 46.870 44.149 41.726
0.7 95.165 84.850 76.553 69.733 64.029 59.188 55.028 51.413 48.245 45.444 42.951
0.8 98.295 87.641 79.070 72.027 66.135 61.135 56.837 53.104 49.832 46.939 44.363
0.9 101.842 90.804 81.924 74.626 68.522 63.341 58.888 55.021 51.630 48.633 45.964
1 105.807 94.338 85.113 77.531 71.189 65.807 61.181 57.163 53.640 50.526 47.754
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TABLE 10: BIAXIAL BUCKLING LOAD COEFFICIENT FOR CCSS PLATE WITH ASPECT RATIO OF 1.0

TNpx
> 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
0 64.737 58.852 53.947 49.798 46.241 43.158 40.461 38.080 35.965 34.072 32368
0.1 64.990 59.082 54.158 49.992 46.421 43.326 40.619 38.229 36.105 34205 32.495
0.2 65.748 59.771 54.790 50.576 46.963 43.832 41.093 38.676 36.527 34.604 32.874
0.3 67.013 60.921 55.844 51.548 47.866 44.675 41.883 39.419 37.229 35270 33.506
0.4 68.783 62.530 57.319 52.910 49.131 45.855 42.989 40.461 38213 36.202 34392
0.5 71.059 64.599 59.216 54.661 50.757 47.373 44.412 41.800 39.477 37.400 35.530
0.6 73.841 67.128 61.534 56.801 52.744 49.227 46.151 43.436 41.023 38.864 36.921
0.7 77.129 70.117 64.274 59.330 55.092 51.419 48.205 45370 42.849 40.594 38.564
0.8 80.922 73.565 67.435 62.248 57.801 53.948 50.576 47.601 44.957 42.591 40.461
0.9 85.221 77.474 71.018 65.555 60.872 56.814 53.263 50.130 47345 44.853 42611
1 90.026 81.842 75.022 69.251 64.304 60.017 56.266 52.957 50.015 47382 45.013
TABLE 11: BIAXIAL BUCKLING LOAD COEFFICIENT FOR CCCS PLATE WITH ASPECT RATIO OF 1.0
e
> " 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 89.333 80.804 73.761 67.848 62.813 58.473 54.694 51.374 48.434 45.812 43.459
0.1 89.558 81.008 73.947 68.019 62.971 58.620 54.832 51.503 48.556 45.927 43.569
0.2 90.234 81.618 74.505 68.532 63.446 59.062 55.245 51.892 48.922 46.274 43.897
0.3 91.359 82.636 75.434 69.387 64.237 59.799 55.934 52.539 49.532 46.851 44.445
0.4 92.935 84.062 76.735 70.583 65.345 60.830 56.899 53.445 50.386 47.659 45212
0.5 94.961 85.894 78.408 72.122 66.769 62.156 58.139 54.610 51.485 48.698 46.197
0.6 97.437 88.134 80.452 74.003 68.510 63.777 59.655 56.034 52.827 49.968 47.402
0.7 100.363 90.781 82.869 76.225 70.568 65.692 61.447 57.717 54.414 51.468 48.825
0.8 103.739 93.835 85.656 78.789 72.942 67.902 63.514 59.658 56.244 53.200 50.468
0.9 107.566 97.296 88.816 81.696 75.632 70.407 65.857 61.859 58319 55.162 52.329
1 111.843 101.164 92.347 84.944 78.640 73.206 68.475 64.319 60.638 57.355 54.410
TABLE 12: BIAXIAL BUCKLING LOAD COEFFICIENT FOR SSSS PLATE WITH ASPECT RATIO OF 1.0
s
> " 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 39.507 35.915 32.922 30.390 28219 26.338 24.692 | 23239 21.948 20.793 19.753
0.1 39.696 36.087 33.080 30.535 28.354 26.464 24.810 | 23351 22.053 20.893 19.848
0.2 40.264 36.603 33.553 30.972 28.760 26.842 25.165 | 23.685 22.369 21.191 20.132
0.3 41.210 37.464 34.342 31.700 29.436 27.473 25.756 | 24241 22.894 21.689 20.605
04 42.535 38.668 35.446 32.719 30.382 28.357 26584 | 25.020 |  23.630 22.387 21.267
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0.5 44.238 40.217 36.865 34.029 31.599 29.492 27.649 26.022 24.577 23.283 22.119
0.6 46.320 42.109 38.600 35.631 33.086 30.880 28.950 27.247 25.733 24.379 23.160
0.7 48.780 44.346 40.650 37.523 34.843 32.520 30.488 28.694 27.100 25.674 24.390
0.8 51.619 46.927 43.016 39.707 36.871 34413 32.262 30.364 28.677 27.168 25.810
0.9 54.837 49.852 45.697 42.182 39.169 36.558 34.273 32.257 30.465 28.861 27.418

1 58.433 53.121 48.694 44.948 41.738 38.955 36.520 34.372 32.463 30.754 29.216

w/t = deflection to thickness ratio; n = biaxial loading ratio.

DISCUSSIONS OF RESULTS

The specific mathematical models from this work presented
in Table 6 indicates that the biaxial buckling of a plate comprises
of the bending and membrane stiffness terms. Also, it shows that
the membrane term is dependent on the deflection of the plate as
a result of the in-plane load. Moreso, in terms of design, the
biaxial buckling load is a function of three parameters only,
namely the aspect ratio of the plate, the flexural rigidity and the
length of the plate along the x-axis. This makes the models very
simple and easy to apply in plate stability analysis and design,
as these parameters can easily be determined from the practical
or design requirements by the designer. The aspect ratio can be
determined from the selected plate dimensions; the flexural
rigidity is easily obtained from the type of material used (which
has its Poisson ratio and Young's modulus). Therefore, the
biaxial buckling load of these plates can be predicted without
difficulties. Also, the specific models can be used to predict the
critical load of a plate (small deflection) when w/t equals zero;
at this point the plate has no deflection. The models can also be
used to predict the uniaxial buckling load of plates under large
displacement when the buckling factor, n, is set to zero. Hence,
these new models are all-encompassing, which is an added
advantage and merit of the models.

To understand the behaviour of the plates, numerical results
presented in Tables 5 to 10 were generated. From the results, the
biaxial buckling load coefficient for the various rectangular plate

configurations exhibited a decreasing trend with increasing
biaxial buckling ratio, n. This means that as the loadings in both
directions approach each other in magnitude, the strength of the
plate reduces, and the plate is more prone to failure. In contrast,
the results demonstrate an increasing strength of the plates as the
deflection-to-thickness ratio, w/t, rises. This is due to stiffening
or hardening of the plates beyond initial yield point. This implies
that rectangular plates do not fail at the initial yield point as
columns do. Plates possess extra strength beyond the initial yield
point. This point gives rise to enhanced economic approach to
design. Hence, one can saves material wastage and reduces the
cost of the project. In addition, the implication of these results to
design is that, when a plate is subjected to biaxial in-plane
loading, it reaches its ultimate yield point faster or easily than
when it is uniaxially loaded. As a result of this, plates subjected
to biaxial loading fail easily than those subjected to uniaxial
loading. Hence, designers of plate must understand the loading
condition of a plate in order to avert structural failure and
economic waste. The new equations are unique and only
applicable to the respective boundary conditions or plate types.

To validate the models, a comparison was made with the
values in literature. The uniaxial buckling coefficient results for
large deflection/displacement in CCCC, CSSS, CSCS, CCSS,
CCCS and SSSS plates are compared with those reported by
[23], as presented in Table 13.

TABLE 13: COMPARISON OF UNIAXIAL BUCKLING LOAD COEFFICIENT RESULTS FOR LARGE DEFLECTION/DISPLACEMENT

NLx

P]P;{AgEE wit 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Present Study 108.000 109.190 112.760 118.710 127.041 137.751 150.841 166.312 184.162
CCCcC Adah et al. (2023) 108 109.19 112.76 118.71 127.041 137.751 150.841 166.312 184.162
Percentage Difference | 0.00006 0.00009 0.000185 0.00033 -0.0003 -0.000006 | 0.00027 -0.00007 0.00024
Present Study 56.805 58.284 62.722 70.119 80.474 93.787 110.059 129.290 151.480
CSSS Adah et al. (2023) 56.805 58.285 62.726 70.128 80.491 93.814 110.098 129.343 151.549
Percentage Difference | -0.00008 -0.0013 -0.006196 -0.0135 -0.0216 -0.0286 -0.0351 -0.0409 -0.0459
Present Study 84.941 86.245 90.158 96.678 105.807 117.544 131.889 148.842 168.404
CSCS Adah et al. (2023) 84.941 86.245 90.158 96.678 105.807 117.544 131.889 148.843 168.404
Percentage Difference 0.0002 0.000321 -0.000452 0.00012 -0.0001 -0.0002 -0.00003 -0.0004 -0.00005
Present Study 64.737 66.317 71.059 78.962 90.026 104.251 121.638 142.185 165.894
cess Adah et al. (2023) 64.737 66.317 71.059 78.962 90.026 104.251 121.638 142.185 165.894
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Percentage Difference | -0.0002 | 0.000642 | 0.0002463 | 0.00011 | 0.00019 0.0004 0.0001 | 0.00029 0.0001
Present Study 89.333 90.740 94.961 101.995 | 111.843 | 124.505 | 139.980 | 158269 | 179.372
cces Adah et al. (2023) 89.333 90.74 94.961 101.995 | 111.843 | 124.505 139.98 158269 | 179.372
Percentage Difference | 0.00039 | 0.000215 | -0.000276 | -0.00002 | -0.00008 | -0.0004 | -0.00009 | -0.00007 | -0.0002

The uniaxial buckling analysis under large deflection for
square plates (aspect ratio of 1.0) with deflection-to-thickness
ratios (w/t) ranging from 0 to 2.0 in increments of 0.25 exhibits
negligible variation, practically 0%, when compared with the
results of [23] for the boundary conditions CCCC, CSSS, CSCS,
CCSS, and CCCS. The minor variation is due to approximation
numerical values especially number of decimal places from the
stiffness value used. This high degree of correlation not only
validates the accuracy of the proposed buckling load equation
but also confirms its robustness and wide applicability of the (5)
across a range of plate types.

In addition, Figure 1 presents a comparative analysis of the
biaxial buckling load coefficient for a CCCS square plate, with
the results of [17], who carried out small deflection analysis on
biaxial buckling of plates using the Galerkin method for biaxial
buckling ratio (n) values ranging from O to 1 in increments of
0.1.

Biaxial Buckling Load Coefficient, n; against Biaxial Buckling Ratio, n = N\/N, for
CCCS Square Plate

100
920
80
70
60
50
40
30
20
10

Biaxial Buckling Load Coefficient

—0— [wuoha (2018)

—>— Present Study

0 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1

Biaxial Buckling Ratio, n =N,/N,

Fig 1: Graph of Critical Biaxial Buckling Load Coefficient, nLs, against Biaxial Buckling Ratio, n = Ny/Nx for CCCS Square Plate

From this Figure 1, it is shown that the present values are in
very closed agreement with the ones compared. It further
validates the adequacy of the new model for CCCS plate in
particular and by extension others considered in this work since
all were based on (5). The comparison of the biaxial buckling
load coefficient, ng obtained in this study with that reported by
[17] who applied Galerkin method reveals a percentage
difference ranging from 0% to 5.56%, with the present study’s
results consistently upper bound of the range. The slight
variation observed can be attributed to differences in the
analytical methodologies adopted in deriving the solutions and
approximations of numerical values. Nevertheless, the close
numerical agreement between both sets of results demonstrates

the reliability of the present approach, with the deviation falling
well within acceptable engineering and design tolerance limits.

To further validate these models, Table 13 shows a
comparison of the values of the uniaxial buckling and
postbuckling load coefficient (n ;) with those of [16] and [21]

for a plate simply supported all-around (SSSS). The comparison
with [16] showed a minimal deviation. The percentage
difference increases with increase in w/t. This minor deviation
is due completely to approximation of numerical values
especially the number of decimal places adopted by the two
authors for stiffness values. The result indicated that the present
work is adequate. Moreso, the comparison with the classical
work which has been acclaimed by many authors as a good
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contribute to knowledge in large deflection analysis [22], [32],
it indicated a maximum percentage difference of 22% at w/t of
2.303. This deviation may be due to the numerous assumptions
and approximations used by Levy in his classical work to simply
the process of getting solution to a very difficult problem of
solving the von Karman large deflection equations. Besides,
Levy used assumed trigonometric deflected shape function in
his work, while this work used derived polynomial shape
functions that gives clear mathematical justification to the

present result than that of Levy. To further discuss this deviation,
Figure 2 shows a projected comparison of the percentage
differences. From the Figure 2, it is clear the percentage
difference trend of Levy demonstrates a diminishing return
effect with the tendency of negligible deviation as the wi/t
increases. This is a clear indication that the present model is
adequate and an improved model for stability analysis of thin
isotropic plates.

TABLE 14: COMPARISON OF THE VALUES OF THE COEFFICIENT OF UNIAXIAL BUCKLING AND POSTBUCKLING LOAD COEFFICIENT (H ,) WITH THOSE IN
LITERATURE FOR SSSS PLATE.

Ny
w Preselét1 study Ibearugbuleg: et al. (2020) Levy é31942) o, Diff 100% % Diff 100 (516_‘353)
t
0 39.51 39.43 39.53 0.20 -0.07
0.25 40.69 40.61 40.18 0.18 1.26
0.498 44.20 44.07 42.77 0.29 3.33
0.743 49.95 49.69 46.88 0.54 6.56
0.984 57.83 57.36 52.60 0.83 9.94
122 67.68 66.97 59.52 1.05 13.71
1.45 79.30 78.42 68.05 1.12 16.53
1.673 92.48 91.27 77.99 1.32 18.58
1.889 107.04 105.53 89.01 1.43 20.26
2.101 123.05 121.20 101.32 1.53 21.45
2303 139.89 137.61 114.61 1.65 22.06
2.498 157.61 155.00 129.51 1.68 21.69
2.687 176.15 173.04 145.61 1.80 20.98
2.871 195.51 192.05 161.70 1.80 20.91
3.044 214.88 210.96 181.36 1.86 18.48
3212 23477 230.40 202.75 1.89 15.79
3.376 255.22 250.38 231.70 1.93 10.15
Trend of %Difference between Presnet work and Compared Works
25
o 20
e
o 15
£ 10 =@ %Diff with
(=) Ibearugbulem
X 5 et al (2020)
0 4_._.__._._.—0-—0—0—0—0—0—0—0—0—0 %Diff with Levy
S D D XD OO DD DDA D A (1942)
P T T F WP S PG 9T

w/t

Fig 2: Trend of % Difference between present work and those compared with.

Tables 15 and 16 presents the biaxial load coefficient for
CCCC and CCCS respectively for aspect ratio of 1.5.
Comparing the biaxial buckling coefficients in Tables 7 and 15
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60.963. This is 43.55% reduction in strength of the plate. This
reduction in strength is due to increase deflection as a result of
increase span length of the plate which reduces the plate’s
stiffness and its ability to resist in-plane loads. Similarly,
looking at the biaxial buckling coefficients in Tables 11 and 16
for CCCS for aspect ratio of 1 and 1.5 respectively, shows a
reduction of the critical load coefficient values from 89.333 to
40.424. This represents a 55% reduction in strength of a CCCS
plates due to 0.5 increase in the aspect ratio of the plate.
Furthermore, the effect of boundary condition on the strength of
a plate can be seen when you look at the values of CCCC plate
in Table 13 and those of CCCS plate in Table 16. The biaxial
buckling values obtained in Table 15 and higher than those
present in Table 16. The implication is that replacing one fixed
support with a simple support reduces the strength of the plate.
For instance, the critical load of CCCC plate from Table 15 is

60.963 as against 40.424 in Table 16 for CCCS plate. This
means replacing one fixed support with a simple support reduces
the strength of the plate by about 34%. All these have practical
design considerations. It means that a plate’s edge support types
influence its strength or load resistance capacity.

From the results and discussions above, it is clear that the
new models for each plate is adequate and robust to analyze both
small and large deflection of thin isotropic rectangular plates. A
look at the new equations suggest that the equations are
applicable to a wide range of plate materials. What is required is
to use the Young’s modulus and Poisson ratio values of the
material of interest. This will reduce difficulties of formulating
different equations for different plate materials.

TABLE 15: BIAXIAL BUCKLING LOAD COEFFICIENT FOR CCCC PLATE WITH ASPECT RATIO OF 1.5

nL

w 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 60.963 58.369 55.986 53.791 51.761 49.879 48.129 46.497 44.973 43.545 42.205
0.1 61.072 58.473 56.087 53.887 51.854 49.968 48.215 46.580 45.053 43.623 42.281
0.2 61.399 58.787 56.387 54.176 52.131 50.236 48.473 46.830 45.295 43.857 42.507
0.3 61.945 59.309 56.888 54.657 52.594 50.682 48.904 47.246 45.697 44.246 42.885
0.4 62.708 60.040 57.589 55.331 53.243 51.307 49.506 47.828 46.260 44.791 43.413
0.5 63.690 60.979 58.490 56.197 54.076 52.110 50.281 48.577 46.984 45.493 44.093
0.6 64.889 62.128 59.592 57.255 55.095 53.091 51.228 49.492 47.869 46.349 44.923
0.7 66.307 63.485 60.894 58.506 56.298 54.251 52.348 50.573 48915 47.362 45.905
0.8 67.943 65.052 62.397 59.950 57.687 55.590 53.639 51.821 50.122 48.531 47.037
0.9 69.797 66.827 64.099 61.586 59.262 57.107 55.103 53.235 51.490 49.855 48.321

1 71.869 68.811 66.002 63.414 61.021 58.802 56.739 54.816 53.018 51.335 49.756

TABLE 16: BIAXIAL BUCKLING LOAD COEFFICIENT FOR CCCS PLATE WITH ASPECT RATIO OF 1.5
rle

" 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 40.424 38.612 36.956 35.437 34.037 32.743 31.545 30.431 29.393 28.423 27.515

0.1 40.558 38.741 37.079 35.554 34.150 32.852 31.650 30.532 29.490 28.518 27.607

0.2 40.962 39.127 37.448 35.908 34.490 33.179 31.965 30.836 29.784 28.802 27.882

0.3 41.635 39.769 38.064 36.498 35.057 33.724 32.490 31.342 30.273 29.275 28.340

0.4 42.577 40.669 38.925 37.324 35.850 34.487 33.225 32.051 30.958 29.937 28.981

0.5 43.788 41.826 40.032 38.386 36.869 35.468 34.170 32.963 31.839 30.789 29.805

113



Adah et al. / Journal of Civil Engineering Frontiers Vol. 06, No. 02, pp. 103 =115, (2025)

0.6 45.268 43.240 41.385 39.683 38.116 36.667 35.325 34.078 32,915 31.829 30.813

0.7 47.018 44911 42.985 41.217 39.589 38.084 36.690 35.395 34.187 33.059 32.004

0.8 49.036 46.839 44.830 42,987 41.289 39.720 38.265 36.914 35.655 34.479 33.378

0.9 51.324 49.024 46.922 44.992 43215 41.573 40.051 38.636 37.318 36.087 34.935

1 53.881 51.467 49.259 47.233 45.368 43.644 42.046 40.561 39.177 37.885 36.675
V. CONCLUSION vol 18 (7-8), pp 899-918, 1996. https://doi.org/10.1016/S0734-

In this study, the biaxial stability equations for rectangular
plates with CCCC, CSSS, CSCS, CCSS, CCCS and SSSS
boundary conditions with large deflection conditions have
successfully been formulated. The derived equations are
sufficient to be applied in determining both biaxial and uniaxial
buckling and postbuckling responses and are valid for cases
involving either small or large deflections for each plate
boundary condition considered in this study. Furthermore, the
bending stiffnesses, membrane stiffnesses, and geometric load
stiffnesses for each plate configuration have been explicitly
evaluated, providing critical parameters for the structural
analysis and design of plate elements. The critical buckling load
coefficients for the aforementioned plate types can be
determined for a range of aspect ratios and biaxial buckling
ratios, offering valuable data for practical engineering
applications. The validity of the present equations has been
verified through comparison with previous studies, with the
results showing only minimal deviations from those reported by
other authors. This high level of agreement confirms the
statistical reliability and engineering adequacy of the developed
models, establishing a dependable analytical tool for predicting
the buckling behaviour of these thin isotropic rectangular plates
under study. This work has provided new equations for six plate
types based on boundary conditions which will simplify thin
plate analysis and design. This work has also, shown that (5) has
a wider application for difference boundary condition in as much
as the deflected shape function of such plate condition can be
derived or is known. Moreso, this work has demonstrated the
effect of boundary conditions on the strength of a plate. In
addition, this work has provided useful numerical data for use in
design and research. Finally, it has opened a research window
for further studies and applicability of these models to such
materials like Fibre Reinforced Polymer composite and other
improved materials
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